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An Experimental Study of the
Effects of Platinum on
Methane/Air and Propane/Air
Mixtures in a Stagnation Point
Flow Reactor

A stagnation-flow burner facility was used to study the catalytic surface reactions of
premixed combustion systems at atmospheric pressure. The configuration serves as an
important platform to investigate the interaction between homogeneous and heteroge-
neous reactions with independent control of the characteristic chemical and physical
residence time scales. Methane/oxygen/nitrogen and propane/oxygen/nitrogen mixtures
were examined with and without the presence of a platinum catalyst located at the
stagnation surface. The effects of oxidizer composition and nitrogen dilution were inves-
tigated. Lean flame extinction limits were determined for the two fuels and were found to
be unaffected by the presence of the catalytic surface. The flame extinction data indicated
that the systems were controlled by gas phase combustion with negligible contributions
from heterogeneous reactions. The catalytic activity of the heated surface in response to
the direct impingement of fuel/air mixtures onto the stagnation surface, without the pres-
ence of a flame, was quantified by the increase in the surface temperature. The methane/
air mixtures demonstrated no catalytic activity for these conditions, whereas propane/air
mixtures demonstrated temperature increases of over 100 K. The data indicate that the
surface reaction was transport limited for the propane/air system.

[DOI: 10.1115/1.3156788]

Keywords: catalytic combustion, platinum, propane, methane, lean extinction limit

1 Introduction

Catalytically assisted combustion can greatly improve the per-
formance of combustion devices and aid the development of new
energy generation technologies. For the past 3 decades, over 85%
of the global energy demand has been supplied by combustion
sources [1]. Considering such large usage, improvements in com-
bustion efficiencies and pollutant emissions will have a dramatic
impact on our efforts toward extending existing fuel resources and
transitioning to sustainable energy while reducing environmental
impact. Catalysts can allow lower-temperature combustion, which
directly reduces some pollutants, such as nitric oxides (NO,), as
well as improve the overall conversion efficiency, stability, and
range of operating conditions [2].

Catalysts are particularly important to the development of small
scale combustion devices. Despite the large energy density of hy-
drocarbon fuels, combustion at small dimensions with high
surface-to-volume ratios often suffers from excessive heat losses
that prevents sustained exothermic reactions. Surface reactions
can overcome these challenges by increasing reaction rates at
lower temperatures and by extending the range of stable combus-
tion. However, the quantitative benefit of surface reactions on
combustion properties, such as extending flammability limits for
practical device operating conditions, remains uncertain primarily
due to the uncertainties in the homogeneous and heterogeneous
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reaction rate chemistries. Catalyst chemistry also introduces un-
certainties due to variability in surface properties.

The overall objective of this research program is thus to
broaden our fundamental understanding of the interactions be-
tween gas-phase and surface combustion in a well defined com-
bustion system and to use such knowledge to improve combustion
performance. This work specifically explored the feasibility of
using catalysts to extend the lean extinction limits of methane and
propane fueled flames and to quantify the surface reactivity for
conditions when no flame is present.

The stagnation-flow reactor used in this work is particularly
well suited to fundamental studies of catalyst performance, as the
stagnation-flow reactor allows independent control of the charac-
teristic time scales for chemical reaction and flow. The stagnation-
flow reactor simplifies temperature and species profiles to nomi-
nally one dimension where the thermal and concentration
gradients occur in the axial direction only. The gas residence time
on the surface and surface reaction rate can be independently con-
trolled by the flow velocity and surface heating, respectively. The
stagnation surface also provides a physical support, which can be
used to examine a broad range of catalyst materials and proper-
ties, and many types of catalyst/fuel combinations can be tested in
such a system. In the present study, the stagnation plane was cho-
sen to be either platinum or silicon, so the effects of surface reac-
tions can be quantitatively compared relative to two levels of sur-
face reactivity (where the silicon surface is considered as a
reference condition with negligible surface reaction). The lean ex-
tinction limits and surface reactivity were examined for a range of
parametric conditions of surface heating, mixture equivalence ra-
tio, and strain rates. For each set of experimental conditions, both
catalytically active and baseline systems were examined.

NOVEMBER 2009, Vol. 131 / 111201-1



2 Scientific Background

There are two processes (surface reaction kinetics and gas-
phase species diffusion) that can limit the heterogeneous reaction
rate. Pfefferle and Pfefferle [3] among many other sources dis-
cussed the relative contributions of these processes. The transition
from surface-kinetics-limited to diffusion-limited operation of a
catalyst sometimes yields an observable step change in behavior.
For example, as the temperature of the inlet reactant flow on a
catalytic reactor is increased, the catalyst temperature may show a
large increase in temperature as the reaction limitation transitions
from surface kinetically limited to diffusion limited. Consistent
with other studies (e.g., Ref. [4]), this transition is called “light-
off” or heterogeneous ignition in the current work. Further heating
will eventually lead to homogeneous ignition of the gas-phase
reactants.

In general, both homogeneous and heterogeneous reactions
contribute to extinction and ignition phenomena when a catalyst is
present. As described earlier, this coupling can yield two distinct
ignition events: heterogeneous and homogeneous ignitions. This
often causes catalyst performance metrics to be intertwined with
the parameters of the specific facility used to study the catalyst
(e.g., the flow geometry, the form of the catalyst (e.g., foil, wash-
coat, etc.), the heat transfer properties of the catalyst support,
etc.). Thus, it is often difficult to compare results between differ-
ent experimental facilities, and it is critical to establish clear base-
lines for conditions where a catalytic surface is not present.

The stagnation-flow configuration has served as a canonical ge-
ometry to investigate catalyst phenomena for many years. Re-
searchers have used such experimental methods to develop and
validate heterogeneous reaction mechanisms [4,5], to investigate
light-off and the effects of catalysts on homogeneous flammability
limits and ignition phenomena [4,6,7], to quantify fuel conversion
efficiencies [8], and to compare catalyst properties, to name a few
research topics. Among the most relevant papers, Veser and
Schmidt [6] experimentally studied ignition of methane, ethane,
propane, and isobutane flames in a stagnation flow. Williams et al.
[7] studied methane and propane light-off and homogeneous igni-
tion in a stagnation flow. In these studies, each fuel was found to
have different ignition characteristics when the catalyst ignition
temperature was considered as a function of fuel-air ratio. Ethane
had the lowest homogeneous ignition temperature at 950°C, and
methane had the highest at 1200°C. Law et al. [9] examined the
lean extinction limits of propane/air flames in stagnation-point-
flow subjected to different boundary conditions on the stagnation
surface, including a platinum catalyst. They found that the catalyst
did not affect the lean extinction limits at the conditions they
considered.

More recent studies by Li and Im [10,11] specifically focused
on the catalytic extension of lean extinction limit. Their numerical
studies of methane/platinum stagnation-point-flow reactor re-
vealed that lean extinction limit can be extended provided the

\
catalyst mount/

;
flame zone when

flame is present

catalyst substrate
reactant flow

inert co-flow

Fig. 1 Schematic of reactor

configuration

the stagnation-point-flow

characteristic time scales of the surface reactions are faster than
those of the gas-phase reactions, as would be the case if the cata-
Iytic surface retains a high temperature with lower heat loss or if
the gas-phase mixture is diluted. It remains to be seen, however, if
the observed catalytic benefit of flammability extension can be
realized experimentally.

Therefore, the goal of the present experimental study is to iden-
tify the practical extent to which heterogeneous reaction can alter
and improve reactor performance and thereby verify the findings
from the earlier modeling studies [10,11]. In particular, we inves-
tigate the effects of platinum catalyst on lean extinction limits of
methane and propane in air, with and without the presence of
gas-phase premixed flames. The consideration of different fuels,
as well as the nonreacting and catalytic surfaces, allows compre-
hensive coverage of conditions at which gas-phase and heteroge-
neous reactions interact at varying degrees of relative dominance.
For reference, a schematic of the flow configuration is shown in
Fig. 1. A stream of gas-phase reactant mixture impinges onto a
solid surface, which can be nonreacting (bare silicon) or catalytic
(platinum). First, we consider the cases in which a gas-phase
flame is present initially, such that the flow impinging on the
stagnation surface consists predominantly of the combustion prod-
ucts. The lean extinction limits are then determined by varying the
reactor conditions, such as the fuel/air equivalence ratio. In the
second part of experiments, a fuel/air mixture at room temperature
and pressure is directed onto the heated surface of the stagnation
plane, such that surface-only reaction modes are investigated. For
these experiments, the rate of heat release at the surface is moni-
tored by measuring the time dependent temperature of the stagna-
tion surface.

3 Experimental Approach

3.1 Experimental Facility. The experimental facility is sche-
matically shown in Fig. 2. A mixture of fuel, oxygen (O,), and
nitrogen (N,) was impinged on a flat plate to achieve a stagnation
flow. The flow was directed upward with the fuel, O, and N,
mixture in the inner tube, and nitrogen flowing through the outer

45 mmI

top view
of nozzle
&17.3 mm 130 mm
L 60 mm
29.08 mm

mixing tank

Fig. 2 Schematic showing gas flow measurement, control, and important

reactor dimensions
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Bottom view
(stagnation plane)
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— Silicon wafer

110 mm
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100 mm

[~ Vacuum applied to groove

100 mm

Fig. 3 Dimensions of stagnation plane and support

coflow tube. The nitrogen coflow minimizes the entrainment of
the ambient air into the reactant mixture in the inner tube. The
volume flow rates of the fuel, O, and N,, and the total mixture
were regulated using calibrated rotameters. The relative levels of
the flow rates were used to set the stoichiometric ratios and levels
of nitrogen dilution of the combustible mixtures. The total mixture
rotameter was used to adjust the overall exit velocity from the
nozzle, and the coflow rotameter was used to adjust the exit ve-
locity of shroud flow of N,. Each rotameter had an uncertainty of
+2% of the reading.

The coflow nozzle consists of the inner tube (reactant mixture)
with 9.08 mm inner diameter and 0.265 mm wall thickness. The
coflow tube was 17.3 mm inner diameter. The length of the coflow
tube was 130 mm. Type 304 stainless steel was used for all tubing.
Dry compressed air (79% N,, 21% O,) was used for some experi-
ments instead of mixing O, and N,.

Figure 3 shows the dimensions of the stagnation plane and the
support. The support for the stagnation plane was constructed
from type 304 stainless steel and was located 45.5 mm above the
nozzle exit such that the stagnation plane was 45 mm above the
nozzle exit. The plate was mounted on a translation stage, which
had a 60 mm range and dimensions of 100X 110 mm?, by 12.5
mm thick. A 0.5 mm thick wafer of silicon with a diameter of 100
mm was used as the stagnation surface. The silicon wafer was
mounted on the supporting stainless steel plate using a vacuum
seal. Insulating washers made from ceramic were placed between
the supporting structure and the stainless steel plate to reduce heat
loss by conduction.

Platinum was used as the catalyst and was deposited on the
silicon wafer by physical vapor deposition (PVD). To achieve a
stable deposition of platinum, a 30 nm layer of titanium was first
deposited on the silicon. A layer of platinum 100 nm thick was
then deposited on the titanium. A bare silicon wafer was used as
the reference nonreactive case of a surface with no catalytic ac-
tivity. The platinum was deposited by PVD to ensure similar heat
transfer parameters would exist between the catalytic and nonre-
active cases.

A 0.2 mm diameter B-type thermocouple (Pt/30%Rh—-Pt/6%Rh,
Omega Engineering Inc.) was used to measure the stagnation
plane temperature (Tg). It was possible to measure T in three
locations radially outward from the centerline of the flow (see Fig.

Journal of Heat Transfer

Table 1 Uncertainty of the experimental parameters

Uncertainty

U¢=+0.028¢
Uxn,= = 0.0057)(,\,2
Uv,e= £0.0360,,

Udmin= * 0.04¢

UTs==*15 K

3), and the variation over the radial measurement locations was
less than 20 K. The thermocouples were in physical contact with
the nonstagnation plane side of the silicon wafer, leaving no part
of the thermocouples exposed to the reactant flow. The thermo-
couple bead temperature was considered equivalent to that of the
stagnation plane and surrounding support. The thermocouple volt-
age was measured using a multimeter (Fluke 45) and was re-
corded at a rate of 2.5 Hz, using a data acquisition system (LAB-
VIEW 8). T was calculated using the polynomial fit for B-type
thermocouples [12].

The equivalence ratio (¢) is determined based on the measured
flow rates for the fuel and O, flow rates (Eg. (1)). The dilution
with N, is defined relative to the total N,+O, flow rates (Eg. (2)).
The nozzle exit velocity (vaye) is the calculated average exit ve-
locity of the total flow exiting the nozzle (Eq. (3)).

_ .(.que.l/Qoz) (1)
(queI/QOZ)stoich
Q
X, = (2)
Qn, + Qo,
Qruer Qoz + QNZ 3)

v =
ave An

The parameters ¢, xn 2, and v, are controlled independently.
Each flow meter was calibrated and corrected for atmospheric
pressure variations during each experiment. The temperature in
the laboratory varied by less than 10°C. The uncertainty in each
flow meter was determined to be two standard deviations based on
the calibration testing, to give a 95% confidence level. The re-
ported uncertainty for ¢, XN, and v,,e Was determined using the
square root of the sum of the uncertainty of each flow meter
squared. The minimum equivalence ratio ¢, and stagnation
plane temperature Tg were determined for each extinction experi-
ment. The uncertainty in Tg was the uncertainty reported by the
manufacturer of the thermocouple. The uncertainty in ¢y, was
based on the variability in results obtained from identical test
conditions and the uncertainty in the measurement of ¢. Table 1
shows the independent and dependent parameters and the associ-
ated uncertainties.

Each fuel was studied with and without an ignited gas-phase
flame. For the flame extinction experiments, the fuel/air mixture
was ignited using an external premixed propane/air flame brought
into the proximity of the stagnation plane. The starter flame was
removed after the stagnation flame was ignited. To measure the
lean extinction limit (&nmin), the average nozzle exit velocity (vaye)
and the nitrogen mole fraction in the oxidizer (xy,) were held
constant while ¢ was decreased until extinction occurred. The
lean extinction limit, ¢nmin, Was defined as the average between the
lowest measured ¢ yielding a stable flame and the slightly lower
¢ yielding an unstable condition. The resolution of controlling ¢
in the experimental setup was 0.008. The surface temperature (Ty)
was recorded for each stable flame condition. In the studies of
extinction limit, the independent parameters were v, ¢, and XNy

NOVEMBER 2009, Vol. 131 / 111201-3



(a) CHy/air (¢ = 0.62; vgpe = 0.5 m/s)

(b) CsHg/air (¢ = 0.77; vgpe = 0.8 m/s)

Fig. 4 Typical methane and propane stagnation-flow flames

and the dependent parameters were ¢pi, and Ts.

To measure the catalytic activity in the absence of a gas-phase
flame, the air and coflow were impinged on the heated plate until
a steady state temperature was reached. For these experiments, the
back side of the plate was insulated using an alumina fiber based
insulation paper (Cotronics Corp.). After the steady state tempera-
ture was reached (Tg), the fuel was added to the mixture and the
plate temperature was monitored until a steady state temperature
with the fuel mixture was reached (Tg). A change in surface tem-
perature after the fuel was introduced indicates heat release due to
the reaction of the fuel on the catalyst. For unburned reactants
impinging on the heated plate, the independent parameters were
Vaver 1 XN, and the initial plate temperature Tg, and the depen-
dent parameter was the increase in the plate temperature ATg
:TSf_TSO'

4 Experimental Results and Discussion

4.1 Extinction Limits for  CH4/O,/No/Air  and
CsHg/ O,/ NL/Air Flames. Figure 4 shows the images of typical
premixed flames for the methane/air and propane/air systems. The
blue emission at the top of Fig. 4 is a reflection from the stagna-
tion surface. For the conditions presented here, the distance from
the stagnation surface to the center of the flame was approxi-
mately 4 mm for methane/air flames and 2 mm for propane/air
flames. The propane/air flames in general have higher flame
speeds; hence they required higher nozzle exit velocities to estab-
lish stable flames. The higher curvature of the propane/air flames
is attributed to the fact that the higher nozzle exit velocity leads to
a more nonuniform velocity profile in the radial direction.

For the stagnation-point-flow configuration under study, the im-
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(a) Gmin as a function of vepe (XN,=0.79)

pinging gases decelerate as they approach the stagnation plane,
and the flame stabilizes at a location where the flame speed bal-
ances with the local gas velocity. A larger flame speed for a given
vave Will cause the flame to be farther away from the plate. Start-
ing with a stabilized flame at a given condition, the extinction
limits were measured by gradually decreasing the mixture equiva-
lence ratio until the flame is extinguished on the stagnation sur-
face.

4.1.1 Premixed CH,4/0,/N, Sagnation-Flow Flames on Pt
and S. The experimental results for the methane extinction limits
are presented in Figs. 5 and 6, while the raw data values are
shown in Table 2. Figure 5 shows the minimum equivalence ratio
at extinction and the corresponding surface temperature as a func-
tion of vaye, While holding xy, constant at 0.79 (as in air). The
results for both unheated (filled symbols) and heated (open sym-
bols) surface conditions are shown. It is evident that both ¢,,;, and
T, increase as v,y increases, implying that the flame can be more
easily extinguished due to the decreased residence time for com-
plete combustion. The higher Ty at extinction for higher v, fur-
ther confirms that faster chemical reactions are needed in order to
sustain combustion under reduced flow residence time. The range
of velocities presented here were practical limitations of the ex-
perimental facility used in this study: A lower flow rate would
result in flashback and a higher flow rate would yield flame
quenching.

Figure 6 shows ¢, and corresponding T as a function of XNy
while holding v,, constant at 0.74 m/s. Results for the heated
condition (open symbols) are shown. As XN, increases, the flame
speed is decreased due to dilution, causing a larger ¢y, at extinc-
tion. However, the plate temperature, Tg, is relatively constant
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A &5 }_éﬂ e
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Fig.5 Lean extinction limits of CH, flames as a function of the nozzle exit velocity for fixed

dilution level
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Fig. 6 Lean extinction limits for CH, flames as a function of dilution for fixed levels of

stretch

with respect to increasing XNy unlike the results shown in Fig. 5.
This is expected because, for a given v,,, with the same residence
time, extinction occurs at the same chemical reactivity. The de-
creased enthalpy of the reactants for increased dilution is offset by
the increased enthalpy at higher equivalence ratio to achieve the
same chemical reactivity at the extinction condition. The range of
dilution with y. was limited at high concentrations by the lack of
stable conditions and at low concentrations by flashback. The
overall results in Figs. 5 and 6 suggest that the combustion char-
acteristics at these conditions are primarily controlled by the gas-

Table 2 Measured extinction limits for methane flames

Vave (M/S) AN, PDmin Ts (K)
Bare Si wafer
0.54 0.79 0.62 470
0.61 0.79 0.64 492
0.67 0.79 0.68 521
0.74 0.79 0.71 560
0.81 0.79 0.74 588
Heated bare Si wafer
0.54 0.79 0.60 567
0.61 0.79 0.63 590
0.67 0.79 0.66 614
0.74 0.79 0.69 642
0.81 0.79 0.73 663
0.74 0.77 0.63 631
0.74 0.79 0.73 632
0.75 0.80 0.84 646
Pt coated wafer
0.54 0.79 0.61 490
0.61 0.79 0.64 518
0.67 0.79 0.67 548
0.74 0.79 0.70 584
0.81 0.79 0.74 607
Heated Pt coated wafer
0.54 0.79 0.60 591
0.61 0.79 0.63 619
0.67 0.79 0.66 647
0.74 0.79 0.69 678
0.81 0.79 0.72 701
0.74 0.77 0.64 665
0.74 0.79 0.73 672
0.74 0.80 0.85 688
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phase combustion.

Figures 5(b) and 6(b) further show that Tj is slightly higher for
the platinum surface case compared with that for the bare silicon
surface case. The magnitude of the temperature difference was
clearly greater than the experimental uncertainty. The increase in
the temperature for the platinum case is attributed to the differ-
ence in the radiative heat loss associated with the two surface
conditions, which is primarily attributed to differences in surface
emissivity. Within the observed temperature range, the emissivi-
ties of platinum, silicon wafer, and stainless steel are estimated to
be 0.26 [13], 0.76 [14], and 0.9 [15], respectively. There are also
visible variations in the surface finish with aging of the catalyst,
which can further modify the emissivity. Consistent temperature
increases with platinum surfaces were observed regardless of the
surface heating conditions, suggesting that surface reactions were
not activated significantly in all cases.

Despite the small differences in the surface temperature, the
presence of platinum hardly affected the lean extinction limits for
the methane flames. There is a slight decrease in ¢, as the plate
is heated, as shown in Fig. 5(a), which is attributed to the en-
hanced gas-phase reactions. However, the overall effect was found
to be insignificant compared with the difference in Tg between the
heated and unheated conditions (Fig. 5(b)). Therefore, for the con-
ditions studied, catalytic activities were negligible, and the com-
bustion and surface heating behavior were dictated by gas-phase
reaction and transport.

4.1.2 Premixed C3Hg/O,/N, Stagnation-Flow Flames on Pt
and S. Anticipating that surface reactions can be more active with
propane/air mixtures, we also conducted experiments to measure
the lean extinction limits of propane/air impinging on the plati-
num surface. The results for the lean extinction limits are pre-
sented in Fig. 7 and Table 3. Figure 7 shows ¢, and correspond-
ing Ts as a function of v,y for xy,=0.79. Only heated surface
conditions were considered at a comparable heating level as in the
methane flame cases. Similar to the methane results, Tg increases
with increasing v,ye, While the difference in Tg, as well as in ¢pin,
between different surface conditions is very small. These results
indicate that the extinction process for the propane flames was
also dictated by the gas-phase reactions.

The results for the propane lean extinction limits are found to
be consistent with the results by Law et al. [9], in which the
effects of platinum on the extinction limits of premixed propane/
air stagnation flames were investigated. They also found that the
propane air flames stabilized on the heated stagnation surface
(Ts=630-800 K) were insensitive to the presence or the absence
of platinum of the stagnation surface. If the characteristic value
for flame stretch is defined as § =v,vg/d, where d is the distance
from the luminous flame sheet to the stagnation surface, the val-
ues for § for the current work range from 2651/s to 3351/s for the
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Fig. 7 Lean extinction limits for C3;Hg flames as a function of the nozzle exit velocity for

fixed dilution level

propane flames (where d=3 mm). The stretch values for the study
by Law et al. [9] range from 1401/s to 11301/s. The results for the
lean extinction limits as a function of the average nozzle exit
velocity are plotted in Fig. 8 along with the experimental results
by Law et al. [9]. The results agree well in the low velocity range
considered in the present study. Law et al. [9] also studied the
location of the flame at extinction. They found the flame location
at extinction was slightly farther from the stagnation plane with
decreasing mixture velocity. For the experimental conditions
tested in the current work, the flame location at extinction was

Table 3 Measured extinction limits for propane flames

Vave (M/S) XN, Prmin Ts (K)
Bare Si wafer
0.80 0.79 0.65 702
0.87 0.79 0.67 718
0.93 0.79 0.73 735
0.87 0.80 0.76 678
0.94 0.80 0.76 671
Pt coated Si wafer
0.80 0.79 0.67 715
0.87 0.79 0.68 735
0.93 0.79 0.68 741
0.87 0.80 0.76 678
0.94 0.80 0.79 702
1.0 T ; ; - -
o Law etal. 1981
09} current work Pt J
m  current work bare Si
0.8r stable combustion |
- ) ©
0.7} © ]
0.6k extinction ]
05 L L L L L
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Fig. 8 Comparison between the C;Hg extinction limits as a

function of the nozzle exit velocity measured in the present
study and the results of Law et al. [9]
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approximately constant; however, note that the range of velocities
considered is much smaller than that of Law et al. [9].

4.2 Catalytic Reactivity for Fuel/Air Mixtures Impinging
on Heated Pt. In the subsequent set of experiments, a fresh fuel/
air mixture stream at ambient conditions was impinged onto a
nonreactive and catalytic surface at different heating conditions in
order to identify if significant surface reactions were observed. All
conditions tested had a nozzle exit velocity of v,,=0.92. Initially,
only air is supplied onto a heated plate, and then the fuel supply is
started at the prescribed equivalence ratio. Activation of surface
reactions is then identified by an additional increase in the surface
temperature. As expected, no additional temperature increase was
observed with bare silicon surfaces, and the results with platinum
surfaces are reported in Secs. 4.2.1 and 4.2.2.

421 CH,/Air Mixtures Impinging on Heated Pt. First,
methane/air was supplied to the heated catalytic surface. The sur-
face temperature, T, was varied from 300 K to 700 K, the average
nozzle exit velocity vg,e was 0.92 m/s for all experiments, and ¢
was varied from 0 to 3. For all conditions considered, no increase
in surface temperature was observed, indicating that catalytic re-
actions were not activated. The observed low methane/air/
platinum activity agrees with previous studies. For example, Du-
pont et al. [16] reported that the conversion of methane was below
5% when the surface temperature was below 750 K. Williams et
al. [7] and Veser and Schmidt [6,7] further showed that heteroge-
neous ignition of lean methane air mixtures on a heated platinum
foil occurs in the range of 820-870 K, which was computationally
confirmed by Deutschmann et al. [17]. Such high surface tempera-
tures could not be achieved with the current experimental facility.

4.2.2 C3Hg/Air Mixtures Impinging on Heated Pt. Unlike the
methane/air system, however, significant surface reactions were
observed with the propane/air system. Table 4 presents the results
for the catalytic response of the three equivalence ratios ¢=1, 1.8,
and 3.5 that were investigated for a range of initial plate tempera-
tures. The average nozzle exit velocity v, was 0.92 m/s for all
experiments. Figure 9 shows the plate temperature as a function of
time for a typical experiment where ¢=1.8 and the initial surface
temperature was T(=614 K. For each experiment the plate was
initially heated until a steady temperature condition was achieved
(about 60 min), after which the reactant mixture was supplied
through the nozzle. The surface temperature then increased gradu-
ally until it reached a second steady condition (about 120 min).
When the fuel supply was stopped, the temperature decreased to
recover the initial heated temperature condition, Tg. The return to
Tg confirms that the second temperature rise in Fig. 9 results from
heat release from the surface reactions of the propane/oxygen/
platinum system.
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Table 4 Platinum surface temperature in response to the
heated initial surface temperature, Tg, with the propane/air
mixture impinging on the surface. The average nozzle exit ve-

locity was 0.92 m/s.

Ty Tyt ATs ¢

725 877 152 1.00
719 857 137 1.00
665 813 147 1.00
610 769 159 1.00
552 747 194 1.80
588 746 159 1.80
614 830 216 1.80
727 905 178 1.80
608 830 222 3.50
619 825 206 3.50
721 893 172 3.50
635 837 203 3.50

The temperature increase due to catalytic reaction is a valuable
metric of the catalyst performance, as it indicates the strength of
the catalytic effects. We define ATg=Tg—Tg, Where T and Tg
are indicated in Fig. 9, as the measure of the intensity of the
catalytic reactions. This quantity was measured for different Ty
by changing the heat input to the surface.

Figure 10 shows AT as a function of the initial surface tempera-
ture Ty for various ¢ conditions. Within the experimental uncer-
tainties, AT appears to remain almost constant for the range of
conditions. This suggests that the catalytic reactions on the plati-
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Fig. 9 Typical temperature evolution in time for unburned pro-
pane air mixture impinging on the heated stagnation surface
(¢p=1.8 and v,,,=0.92 m/s)
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Fig. 10 Catalytic response, AT, of heated Pt surface to
C3Hg/air mixture as a function of surface heating (Tgg) for vari-
ous equivalence ratios. The average nozzle exit velocity was
0.92 m/s.
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C3Hg/air mixtures of the current work to Veser and Schmidt [6]

num surface have reached the diffusion-limited mode. In other
words, the catalytic activity is sufficiently high such that the over-
all heat release rate is determined by the transport rate of the
reactant gases to the surface, which is fixed constant here. Never-
theless, there is a tendency that AT increases as the mixture
equivalence ratio increases.

The steady state surface temperature with catalytic reaction, T,
measured in the present study is compared with the results by
Veser and Schmidt [6], who investigated heterogeneous ignition
and extinction characteristics of propane air mixtures on an elec-
trically heated platinum foil. Figure 11 shows the results as a
function of the normalized equivalence ratio, ®=¢/(1+ ¢), such
that the lean and rich limit is bounded between 0 and 1. The flow
velocity in Veser and Schmidt [6] was 0.025 m/s, whereas in the
present work the average velocity was 0.92 m/s. Note that the
present experimental results show stable operating conditions in a
region where Veser and Schmidt [6] found no stable operating
conditions. This may be attributed to a number of factors. The
present experimental setup has large heat loss associated with a
large surface area and surface emissivity, unlike the case of the
electrically heated foil employed by Veser and Schmidt [6]. In
addition, the flow residence time is significantly lower in the
present study due to the high nozzle exit velocity. The steady
surface reaction temperature depends strongly on these conditions
for heat and mass transport. Further studies may provide more
quantitative assessment of these effects.

5 Conclusions

Experimental studies were conducted using a stagnation-point-
flow combustor configuration in order to assess the feasibility of
lean flammability extension by catalytic reaction. Platinum versus
bare silicon surfaces were compared, while methane/air and
propane/air at various mixture compositions were considered for
gas-phase reactants. An additional heat supply to the catalytic sur-
face was attempted to enhance the activity of surface chemistry.
For all of the conditions considered, the lean flame extinction
limits were predominantly governed by gas-phase combustion,
and the presence of the catalytic surface hardly affected the ex-
tinction limits. The catalytic surface temperature at the extinction
limits showed a slight, yet consistent, increase with the catalytic
surface, due likely to the differences in the surface heat transfer
properties. In contrast to the computational studies conducted by
Li and Im [10,11], the present experimental facilities are charac-
terized by large heat losses, resulting in catalytic surface tempera-
tures much lower than those predicted by the modeling studies.

The extent of catalytic activity was also investigated by supply-
ing a fuel/air mixture stream onto a heated platinum plate. For the
heated surface temperature range obtained in the present study,
methane/air mixtures failed to activate catalytic reaction, consis-
tent with previous experimental findings. On the other hand, the
propane/air mixtures did activate surface chemistry at a significant
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level, by raising the surface temperature by a few hundred de-
grees. The results demonstrate that stable heterogeneous reaction
conditions can be achieved with propane/air at relatively low tem-
peratures and moderate flow rates. For the conditions under study,
the magnitude of the additional surface temperature increase due
to catalytic reactions was insensitive to the initial surface tempera-
ture, suggesting that the observed heterogeneous reaction was
transport limited.

The present study provides useful new data on near-extinction
characteristics of platinum/methane and platinum/propane reac-
tion systems. There was clear evidence that propane can yield
stronger catalytic activities. However, the benefit of catalytic re-
action in achieving leaner and lower-temperature combustion in
compact reactors with high surface-to-volume ratios should be
carefully assessed by accounting for the fact that most such de-
vices are likely subject to significant heat losses. Therefore, care-
ful design and integration to ensure maximum thermal insulation
are essential in acquiring the benefit of catalytic reactions. To this
end, it is also of interest to investigate alternative novel catalyst
materials with substantially lower activation temperatures.
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Nomenclatur
A, = nozzle exit area

Q = volumetric flow rate
Ts = surface temperature
Ty = initial surface temperature
Tg = final surface temperature
ATy = difference in surface temperature
Uparam = uncertainty in a given parameter
vae = average nozzle exit velocity
Xn, = nitrogen mole fraction in oxidizer
¢ = equivalence ratio
dmin = lean extinction limit
& = normalized equivalence ratio
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On the Analysis of Short-Pulse
Laser Heating of Metals Using the
Dual Phase Lag Heat Conduction
Model

Transient heat conduction in a thin metal film exposed to short-pulse laser heating is
studied using the dual phase lag heat conduction model. The initial heat flux distribution
in the film, resulting from the temporal distribution function of the laser pulse, together
with the zero temperature gradients at the boundaries normally used in literature with the
presumption that they are equivalent to negligible boundary heat losses is analyzed in
detail in this paper. The analysis presented here shows that using zero temperature
gradients at the boundaries within the framework of the dual phase lag heat conduction
model does not guarantee negligible boundary heat losses unless the initial heat flux
distribution is negligibly small. Depending on the value of the initial heat flux distribu-
tion, the presumed negligible heat losses from the boundaries can be even way larger
than the heat flux at any location within the film during the picosecond laser heating
process. Predictions of the reflectivity change of thin gold films due to a laser short heat
pulse using the dual phase lag model with constant phase lags are found to deviate
considerably from the experimental data. The dual phase lag model is found to overes-
timate the transient temperature in the thermalization stage of the laser heating process
of metal films, although it is still superior to the parabolic and hyperbolic one-step
models. [DOI: 10.1115/1.3153580]

Keywords: dual phase lag, non-Fourier heat conduction, short-pulse laser heating, re-

flectivity change

1 Introduction

Short-pulse laser heating processes have made tremendous im-
pacts in microelectronics and material processing, such as laser
patterning, micromachining, and laser surface treatment processes
[1,2].

Short-laser heating of metals involves deposition of radiation
energy on electrons, resulting in energy increase in electrons; en-
ergy is transferred to lattice through electron-lattice interaction
and propagates through media. Theoretical models in literature
that are used to describe this nonequilibrium energy transport dur-
ing the short-pulse laser heating are the classical parabolic one-
step model [1,3], the hyperbolic one-step model [1], the parabolic
two-step model and hyperbolic two-step model [1,4], and the dual
phase lag (DPL) model developed by Tzou [4]. As reported in
Refs. [1,4], the one-step models are considered inapplicable for
the theoretical analysis of short-pulse laser heating of metals. The
parabolic two-step model captures the heating and thermalization
processes of the electron temperature in short-pulse laser heating
of thin metal films fairly well, although it fails to predict finite
speed of energy propagation [1,4]. The hyperbolic two-step model
is found to agree well with the experimental data in subpicosec-
ond laser heating processes of thin metal films [1]. Recently, a
semiclassical two-temperature model was formulated to account
for the effects of electron drifting and electron kinetic pressure
[5].
The dual phase lag model was developed to account for both
the temporal and spatial effects of heat transfer in one-temperature
formulation [4,6] and takes the form
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qrt+7) =-kVT(r,t+7)

The quantities 7, and 71 in this model are the phase lag of the heat
flux and the phase lag of the temperature gradient, respectively. In
the DPL model framework, 7, captures the fast transient effect of
thermal inertia and 77 captures the time delay due to the micro-
structural interaction effect [4,6]. The DPL model reduces to clas-
sical Fourier’s heat diffusion, thermal wave, phonon-electron in-
teraction, and phonon scattering models when values of 7, and 7
are changed [4,6]. The phonon-electron interaction model is ob-
tained with nonzero values of both 7, and 71 with 7, <7 [4]. The
parabolic two-step heating model with temperature-independent
thermophysical properties was reformulated in Ref. [4] to derive
two identical equations governing transient energy transport in
both the electron gas and the metal lattice. These two equations
are identical in form to the energy equation utilizing the linearized
form of the dual phase lag constitutive relation. The phase lags
and 77 are hence related to the thermophysical quantities appear-
ing in the two-step parabolic model and are estimated for different
metals [4]. The phase lags in Ref. [4] are, however, adjusted to
account for the strong dependency on temperature of thermal con-
ductivity and heat capacity of the electron gas. The formulation is
detailed in Ref. [4] and is thus not repeated here. With this equiva-
lency between the energy equation based on the DPL model and
the two-step parabolic model with temperature-independent ther-
mophysical properties, the problem of short-pulse laser heating of
a thin gold film was studied in Ref. [4] using the DPL model to
explain the transient energy transport in terms of the lagging ther-
mal behavior. Theoretical predictions of the reflectivity change at
the front surface of a thin gold film irradiated by a short laser heat
pulse based on this model are found to agree well with the experi-
mental data available, whereas it fails to give acceptable results on
the rear surface.

NOVEMBER 2009, Vol. 131 / 111301-1



Laser pulse
e

—x

x=0

x=L

Fig. 1 Problem geometry: a thin metal film exposed to a short
laser pulse

The problem of short-pulse laser heating on a thin gold film
using the DPL model with constant phase lags is revisited in this
work. The problem formulation using the DPL model is first pre-
sented in general form and is then used to rederive the solution
obtained in Ref. [4] within the context of the present work. A
discussion of the results obtained from this solution in terms of
the laser pulse profile together with the initial and boundary con-
ditions implemented in the solution of Ref. [4] is presented, fol-
lowed by a discussion of the results obtained with a laser pulse
almost identical to the one used in Ref. [1] but does give negli-
gible heat losses at the boundaries. A comparison between the two
solutions is made in terms of the temperature and heat flux distri-
butions, as well as the reflectivity change at the front surface of a
thin gold film. Based on the results presented, concluding remarks
on the use of the DPL model in short-pulse laser heating processes
of metals are then stated.

2 Problem Formulation

The problem geometry in this study is simply a thin metal film
exposed to a short-laser heat pulse at the front surface [1,4] (left
boundary), as shown in Fig. 1. The heat conduction equation and
the linearized form of the dual phase lag model [4] take the form

aq  aT PT
g tk—+ =0 1
4 T T T ot ax @
koT oq
——+—=5(xt 2
adt X 1) &)

The source term S(x, t) is the laser energy absorption rate given in
general form as

S(x,1) = SoF(X)G(t) @)

where S, is the intensity of the laser absorption and is a constant,
G(t) is the light intensity of the laser beam, and

F(x)=e™? 4)
with & being the laser penetration depth.

3 Laplace Transform Solution

The above problem was solved in Ref. [4] using the tempera-
ture representation of the energy equation obtained by manipulat-
ing Egs. (1) and (2). However, the mixed temperature-heat flux
formulation was used [4] for multilayered films. The problem here
is solved using the mixed formulation given by Egs. (1) and (2) to
give the same solution as that obtained in Ref. [4].

Taking the Laplace transform of Egs. (1) and (2) with p as the
Laplace transform parameter gives
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- dT(x; dT,

q0p) + U% = Haol0) * W% ©
dq(x; k= K S

D)+ B (xip) = STo0 +5c:p) ®)

where
k(l + pTT) H - ’Tq
1+ Py ' 1+ p7'ql

S(x;p) = SF()G(p), U=

k'TT
T+ P

()
Differentiating Eq. (5) and substituting the result in Eq. (6) give
T _op Hdag WeT, k1o

= + —T,— =S 8
dx? Udx Udx® aU ° U ®
where
1+
gz o /PL*7P) 9
a(l+ 7p)

Next, defining the reduced temperature gives

0(x,1) = T(x,t) = T(x,0) = T(x,t) = To(x) (10)
Equations (5) and (8) are rewritten as
_ o de u\dT,
q+ UdX =Hgy(x) + (W p) ™ (11)
¢’ _~ Hdg (w 1)d2T 1—
— -BM= | - |- 12
e Udx \U p/ae U (12)

The above problem is solved in Ref. [4] with the following initial
and boundary conditions:
dT(x,0) _

T(x,0) = To(x) = T, = const, "

0 (13)

Using Eqg. (13) in Eq. (2),
dq(x,0)
IX

and the initial heat flux distribution [4] is found by integrating Eq.
(14):

=5(x,0) = S,F(XG(0) (14)

q(x,0) = = 85,F(X)G(0) = g(x) (15)

The nonzero initial heat flux distribution associated with a con-
stant initial temperature (i.e., zero initial temperature gradient), as
given by Egs. (13) and (15), are physically meaningful within the
framework of the DPL model only when 7, <7 where the tem-
perature gradient lags behind the heat flux, which is indeed the
case for metals in general. However, for 7, = 7, the heat flux lags
behind the temperature gradient and a nonzero initial heat flux
distribution associated with an initial zero temperature gradient is
physically not possible in this case.

The boundary conditions used in Ref. [4] assuming negligible
heat losses at the boundaries are

aTO. _TLY _

16
ox ox (16)
or in the Laplace transform domain
d6(0,p) _ de(L,
0.p) _doL.p) _, (17)

dx dx

In this work, we use the same boundary conditions (Egs. (16) and
(17)) used in Ref. [4]. The governing equations (Egs. (11) and
(12)) with the above conditions are reduced to
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_ do
q+U—= qu(x)

1
. (18)
4?0 -~ Hdg, 1=

— —-B?9=——"-=§ 19
dx? Udx U (19)
Using Eq. (15) in Eq. (19),
20 -
vl B?0= yF(x) (20)
where
SJ[HG(0) -G
S LELES o1
The general solution of Eg. (20) is given as
6(x;p) = AeB* + Aye B+ AgF(x) (22)
where the constant A5 is found by using Eq. (22) in Eq. (20):
S, (HG(O)—@) v
A, = = 23
718 -B? U 1-B28 @3)

Using the boundary conditions (17) in Eq. (22), the constants A;
and A, [4] are evaluated as

A3 e—L/(S_ e—BL
= 5B eBlL—eBL"
The governing equation for the heat flux in the Laplace transform

domain (not computed in Ref. [4]) can be found by differentiating
Eq. (22) and substituting the result in Eq. (18), which gives

A
A A=A - Ej (24)

q(x,p) =Hg,(x) - U [AlBeBX - A,Be™Bx— AfF(x) (25)

The laser heat pulse used in Ref. [4] takes the following form:

1-R
1=J<_>E_X/§e_almp‘ - SOF(X)G(t) (26)
va/Iin(2) \ t,6
while the original laser heat source term used in Ref. [1] using
one- and two-step heat conduction models is given as
1-R
t,0

S(x,t) =

2
S0= J( )e'*/ﬁe‘“ 02U = 5 F(X)G*(1)

" @2
(27)

where R is the reflectivity of the surface layer, J is the laser
fluence, & is the laser penetration depth, t, is the Laser pulse
full-width-at-half-maximum (FWHM) duration, and a is a con-
stant parameter.

As stated in Ref. [4], Eq. (26) is used instead of Eq. (27) to
avoid the complexity of the Laplace transform inversion of error
functions and it better fits the experimental results. The difference
between the two laser pulses (Egs. (26) and (27)) is only in the
temporal Gaussian distribution as is clear from the above two
equations. Following the analysis presented in Ref. [4], the tem-
poral Gaussian distribution is shifted in time by —2t, so that Eqs.
(26) and (27) become

1-R
S(x,t) = ,_J<—)e-X/5e-a|‘-2tpV‘p:sOF(x)G(t) (28)
SERIES J( : __R>E‘”e'<4 2ty =27 = 5 F(x)G*(1)
Va/in2) \ t,6

(29)

As stated in Ref. [4], the factor (t-2t;) in Egs. (28) and (29)
results from shifting the initial time from zero to -2t in corre-

Journal of Heat Transfer
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Fig. 2 Variation in the normalized heat flux with time at differ-
ent locations in gold film with the laser pulse given by Eq. (28)

spondence with the analysis of Qiu and Tien [1] using the para-
bolic two-step model, where the laser heating of the electron-
lattice starts from a thermalization state. The time shift in Egs.
(28) and (29) also simplifies the implementation of the Laplace
transform solution method used in this work.

Comparing Egs. (28) and (29) with Eq. (3), it follows that

2 1-R
So = C—J —_— (30)
Vaiin2) \ t,8
G(t) = e—a\t—th\/tp (31)
G*(t) = e~ (4 2)(tty - 2)2 (32)

and the Laplace transform of G(t) (Eqg. (31)) [4] is given as

a _ e—Zptp e—Zptp

— “ e_z
G(p) = J e_mG(t)dt=tp[ ] (33)
0

pt,—a pt,+a

The temperature and heat flux distributions in the metal film
(Fig. 1) are calculated by inverting the Laplace transformed Egs.
(22) and (25) to the physical time domain using the Reimann sum
method detailed in Ref. [4].

4 Results and Discussion

The presumption of negligible boundary heat losses supposed
to result from setting the temperature gradients at the boundaries
to zero (Eq. (16)) in the above solution is first assessed by com-
puting the heat flux at the boundaries and comparing it with the
heat flux at different times and locations in the metal film during
the heating process of the metal film. The same parameters used in
Ref. [4] to theoretically predict the reflectivity change of a thin
gold film are used in this work: J=13.4 W/m?, §=153
%107 m, a=1.992, t,=100 X 1075 s, and R=0.93. The thermal
properties of gold are taken as k=315 W/mK and «=1.2
X107 m?/s, while the phase lags are taken as 7,=85
X102 s and 7=90x 10712 s,

Figure 2 shows the variation in the absolute value of the nor-
malized heat flux with time at different locations within the film
including the left and right boundaries. Figure 3 also shows the
variation in the normalized heat flux with distance at different
times. The heat flux g(x,t) at any location in the domain is nor-
malized via dividing it by the heat flux at the left boundary q(0,t)
and the absolute value of this ratio is taken since the magnitude of
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Fig. 3 Variation in the normalized heat flux with distance at
different times with the laser pulse given by Eq. (28)

the heat flux rather than its direction is most important to the
discussion. These two figures clearly show that the heat flux at the
left boundary (heat loss) is even higher than the heat flux at any
location in the film for t>0.78 ps. The heat flux at locations x
=10, 30, and 50 nm for t<<0.78 ps is around 5, 4, and 2 times
higher than that at the left boundary. Hence, the heat loss from the
left boundary is considerably large at any time during both the
heating and thermalization processes. Thus, within the framework
of the problem formulation above, setting the temperature gradi-
ent to zero at the boundaries does not give negligible heat losses
from the film and the use of a laser pulse in the form of Eq. (28)
gives a heat loss at the left boundary that is comparable to or even
higher than the heat flux at any location within the film. This is

also clear from Eq. (18), where setting d#/dx=0 at a boundary
implies a negligible heat loss only when the initial heat flux
Qo(x)=0.

The variation with time of the temperature in the film at differ-
ent locations corresponding to Figs. 2 and 3 is shown in Fig. 4.
The temperature at all locations and after sometime continually
decreases with time with the highest rate of decrease being at the

Laser pulse: Eq. (28) L = 100 nm

——— x = 0.0 nm (left boundary) |

o

T(x,t)- T

Time (ps)

Fig. 4 Temperature variation with time at different locations in
gold film with the laser pulse given by Eq. (28)
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left boundary due to the high heat losses there. The temperature
variation in Fig. 4 is shown for a duration of 10 ps. After around
10 ps, the temperature in the whole film indeed drops below its
initial value. This unrealistic behavior results from the large heat
losses due to the implementation of zero temperature gradient
condition together with the initial heat flux distribution resulting
from the laser pulse as given by Eq. (28) and raises a question in
terms of the time interval during which the solution above is valid.

The boundary heat fluxes can, in fact, be evaluated using the
governing equations and the initial and boundary conditions used
in the solution. Applying the initial and boundary conditions (Egs.
(13)-(16)) to Eq. (1) at the boundaries result in

aq(L,t
:O’ q(th)+7'q q;t ):O

4q(0,t)
p (34)

a(0,1) + 7

Likewise, Eq. (18) after applying the boundary conditions (Eg.
(17)) is reduced at the boundaries to

q(0;p) =Hao(0), g(L;p) = Hay(L) (35)
The solutions of either of the above two equations give the bound-
ary heat fluxes as

q(0,1) =~ go(0)e™""a =~ 88,G(0)e ™" (36)

q(L,1) = - go(L)e 7= - 55,G(0)e™ %" (37)
Even at the right boundary, where the heat flux is around three
orders of magnitude less than that at the left boundary
(q(L,1t)/q(0,t)=e"Y9~0.00145), the heat flux there is not negli-
gible compared with the heat flux at locations close to the right
boundary during early times of the heating process and is, in fact,
close to the heat flux at any location in the film for t>1.5 ps as is
clear from Figs. 2 and 3. Moreover, with the formulation above
and for 7,= 7r=0 (the parabolic one-step model), which is a spe-
cial case of the DPL model, Eq. (34) or Eq. (35) with zero tem-
perature gradients at the boundaries employed in the above solu-
tion reduces to q(0,t)=q(L,t)=0, which is in contradiction with
Eq. (18) unless go(x)=0. In addition, a nonzero initial heat flux
distribution associated with a constant initial temperature (i.e.,
zero initial temperature gradient) within the film presented by Egs.
(13) and (15) are physically meaningful within the framework of
the DPL model only when 7, < 71, where the temperature gradient
lags behind the heat flux. However, for 7,= 7y, the temperature
gradient is the cause of energy transport while the heat flux is the
effect; hence the heat flux lags behind the temperature gradient so
that an initial heat flux distribution associated with an initial zero
temperature gradient is physically not possible in this case and the
use of Egs. (13) and (15) is not admissible unless the initial heat
flux distribution is vanishingly small or zero.

From the above discussion and results, it is clear that the con-
ditions of zero temperature gradients at the boundaries do not
imply negligible boundary heat losses unless the initial heat flux
distribution qy(x) that is determined from the laser heat source
term is negligible (i.e., qo(x) —0). This condition is clearly depen-
dent on the temporal Gaussian distribution function G(t). By in-
specting Egs. (31) and (32), one finds the ratio G(0)/G*(0)
=e 28/¢716In2= 1790, This means that using the laser heat source
term of Eq. (28) results in an initial heat flux distribution gq(x)
that is around three orders of magnitude higher than the initial
heat flux that would be produced if Eq. (29) were used. To remedy
this problem, and avoid the complexity of evaluating the Laplace
inversion of the temporal Gaussian distribution function given by
Eq. (32) but still have a reliable semi-analytical solution of the
problem, the following temporal distribution function is used in
the laser pulse:
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Fig. 5 Temporal Gaussian distribution of the laser pulses
given by Egs. (28), (29), and (38)—(40)

ot |4
Gy(t) = [cl - COS(ZT,,)]

The function in Eq. (38) approximates Eq. (32) very closely with
the proper choice of the constants ¢; and c,. The constants ¢, and
C, can be evaluated under the conditions that G;(0)=G*(0) and
G1(2t)) =G*(2ty)=1. This gives

¢ = 05(1 + e—16 In 2)1/4l (39)
resulting in the same initial heat flux q,(x) as that given by Eq.
(32), which is 1220 times less than that produced by Eq. (31).

Also, the function given in Eq. (38) has the property G4(0)=0 and
its value is 1 at t/t,=2 for

(38)

C2:1_C1

Cl = C2 =05 (40)

This results in a perfectly zero initial heat flux and constant initial
temperature distributions so that in view of Eq. (18) the use of a
zero temperature gradient at a boundary perfectly reduces to a
zero boundary heat loss. The temporal Gaussian distributions
given by Egs. (28), (29), and (38) are all shown in Fig. 5. Clearly,
the pulses given by Eq. (30) very closely approximate the laser
pulse given by Eq. (29) for both c; # ¢, as given by Eq. (39) and
¢;=c,=0.5 (Eq. (40)), with a negligible initial zero heat flux in the
first and perfectly zero initial heat flux in the second as explained
above, while the pulse given by Eq. (28) is considerably different
in shape and more importantly in terms of the function initial
value.

The variation in the normalized heat flux distribution in both
time and space in the gold film are shown in Figs. 6 and 7 using
the laser pulse of Egs. (38) and (39). These results show that the
heat flux at the boundaries is in this case much smaller than the
heat flux at any location within the film during the heating process
opposing the results shown in Figs. 2 and 3 with the laser pulse
given by Eq. (28). Thus, with the laser pulse of Eqg. (38), setting
the temperature gradients at the boundaries to zero does result in
negligible heat losses from the boundaries. Figure 8 shows the
temperature variation with time in the gold film at different loca-
tions corresponding to Figs. 6 and 7. The temperature rises due to
the applied laser heat pulse and then tends to approach a steady
value but does not continually decrease as was the case in Fig. 4.
This is due to the fact that the heat flux at the boundaries is indeed
negligible as clarified in Figs. 6 and 7.

Next, the normalized temperature change (reflectivity change)
at the left surface of the gold film is investigated. Figures 9 and 10
show the reflectivity change at the front surface of gold films with
widths L=100 nm and L=200 nm, respectively, using the laser
pulse of Egs. (38)—(40) that closely approximate Eq. (29) used in
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Fig. 6 Variation in the normalized heat flux with time at differ-
ent locations in gold film with the laser pulse given by Egs. (38)
and (39)

Ref. [1] within the framework of one- and two-step heating mod-
els, together with the experimental results of Brorson et al. [7] and
the solution of Ref. [4]. The present solution clearly deviates con-
siderably from the experimental results and that given in Ref. [4]
for the reasons explained above. However, the present solution
and the experimental data both share the common feature that
after around 2 ps the normalized temperature change tends to
assume a near constant value, contrary to the solution in Ref. [4]
that shows a continuous decrease in temperature as explained ear-
lier in this section. The more sharp temperature drop in the solu-
tion of Ref. [4] that makes it better match the experimental results
is due to the very large heat losses from the left boundary, as
shown in Figs. 2 and 3. As reported in Ref. [4], the DPL model
fails to predict the reflectivity change at the rear surface of the thin
gold film; hence and from the analysis and results presented in
this work, it should not be expected that the DPL model results in
a good agreement with the experimental data or predictions of the
two-step heating models. Figure 11 provides a comparison be-
tween predictions of the DPL, parabolic, and hyperbolic one-step

10*4 ppp—— : : ‘ L

5101_ L =100nm MI
= Time
= — === 0.00(ps)
%104 Laser pulse: Egs. (38, 39) ————— 0.10 L
=y — — — 0.30
o 0.78
1074 = 1.30 3
1074 3
1073 T T T T T T T T
0 25 50 75 100
X (nm)

Fig. 7 Variation in the normalized heat flux with distance at
different times with the laser pulse given by Egs. (38) and (39)
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Fig. 8 Temperature variation with time at different locations in
gold film with the laser pulse given by Eq. (28)

models in terms of the normalized temperature change at the front
surface of gold film. These one-step models deviate considerably
from the experimental results, although predictions of the DPL
model are the closest to the experimental data.

Figures 12 and 13 present a comparison between the experi-
mental data and predictions of the DPL model over a wide range
of the phase lag ratios, including the values 7,=8.5 ps and 77
=90 ps estimated and used in Ref. [4] as well as in the present
work (Figs. 2-11). The laser pulse in these two figures is as given
by Egs. (38) and (40) that give rise to zero boundary heat loss so
that the zero heat flux and the zero temperature gradient at the
boundaries are perfectly equivalent. Clearly the DPL model devi-
ates considerably from the experimental data for any pair of 7
and 7r. Increasing the value of 7, (with constant ry), as in Fig. 12,
or decreasing the value of 7r (with constant 7)), as in Fig. 13,
shifts the DPL more toward the parabolic one-step model shown
in Fig. 11.
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Fig. 9 Normalized temperature change at the left surface of
gold film (L=100 nm) using laser pulses given by Egs. (28) and
(38)—(40) together with experimental data
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Fig. 10 Normalized temperature change at the left surface of
gold film (L=200 nm) using laser pulses given by Egs. (28) and
(38)—(40) together with the experimental data

5 Conclusions

The problem of short-pulse laser heating of a thin gold film is
investigated in this work using the DPL model with constant
phase lags. The initial heat flux distribution in the thin film result-
ing from the temporal distribution function of the laser pulse to-
gether with the zero temperature gradients at the boundaries nor-
mally used in literature with the presumption that they result in
negligible boundary heat losses are analyzed in detail in this pa-
per. The analysis presented here show that using zero temperature
gradients at the boundaries does not guarantee negligible bound-
ary heat losses unless the initial heat flux distribution is negligibly
small. Depending on the value of the initial heat flux distribution,
the presumed negligible heat losses at the boundaries can be even
way larger than the heat flux at any location within the film during
the short-pulse laser heating process. The mathematical represen-
tation of the laser pulse together with the resulting initial heat flux

Lo~ DPL model (t, = 90, 1, =8.5ps) [
0.9 YRR —r—— e Parabolic (1, =1, =0)
) | \'\ S Hyperbolic (t =0, t,=8.5ps)
0.8 N S.n Experiment (Brorson et al., 1987)
.0 AN ~
[—10 0.71
E 0.6
[_4
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Z 031 . -
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0.2 L] . . L
0.1 L =100nm . . |
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (ps)

Fig. 11 Normalized temperature change at the left surface of
gold film (L=100 nm) with negligible boundary heat losses
(Egs. (38) and (39)): a comparison between predictions of the
DPL, parabolic, and hyperbolic models together with experi-
mental data
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due to a laser short heat pulse using the dual phase lag model are
found to deviate considerably from the experimental data. The
dual phase lag model is found to overestimate the transient tem-
perature in the thermalization stage of the heating process of metal
films. The seemingly good agreement between the experimental
data and theoretical predictions using the DPL model with con-
stant phase lags in the thermalization stage seem to be a result of
the very large heat losses from the boundary. The DPL model with
constant phase lags is hence incapable of giving acceptable pre-
dictions not only on the rear surface of thin gold film as reported
in Ref. [4] but also on the front surface, though it is still superior
to the parabolic and hyperbolic one-step models.

Nomenclature

Fig. 12 Normalized temperature change at the left surface of
gold film (L=100 nm) with zero boundary heat losses (Egs.
(38) and (40)): a comparison between experimental data and
predictions of the DPL for =90 ps and a range of 7

distribution and the zero temperature gradients at the boundaries
is thus very critical to the thermal analysis of thin films exposed to
short-pulse laser heating. Contrary to what has been reported in
literature, predictions of the reflectivity change of a thin gold film
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k = thermal conductivity (W/m K)
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p = Laplace transform parameter
g = heat flux vector (W/m?)
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r = position vector (m)
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Fig. 13 Normalized temperature change at the left surface of
gold film (L=100 nm) with zero boundary heat losses (Egs.
(38) and (40)): a comparison between experimental data and
predictions of the DPL model for 7,=8.5 ps and a range of =
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a = thermal diffusivity (m?/s)

6 = reduced temperature (T—T,)

6 = Laplace transform of 6

74 = phase lag of the heat flux (s)

7r = phase lag of the temperature gradient (s)

& = penetration depth of laser radiation (m)
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1 Introduction

The analysis of radiation along with Fourier conduction finds
applications in the design of many engineering devices. The as-
sumption of an infinite speed of conduction wave front made in
Fourier heat conduction is not applicable for extremely short time
levels, at normal time levels near the absolute zero temperature,
and in the processed meat/skin [1]. This limitation with infinite
propagation speed in the Fourier’s law of heat conduction was
pointed out by Cattaneo [2] and Vernotee [3], and they proposed a
modified form of the conduction equation called the non-Fourier
heat conduction equation.

Following the proposition by Cattaneo [2] and Vernotee [3] in
the past two decades, a good amount of work [4-7] has been
devoted in studying the non-Fourier effects in many thermal sys-
tems. Problems involving non-Fourier conduction combined with
radiation have been investigated in simple to complex geometries
[1]. Problems were analyzed with various numerical methods.
Conduction-radiation problems in a 1D planar medium consider-
ing non-Fourier effects have been studied by many [5,6]. Re-
cently, Mishra et al. [7] solved non-Fourier conduction-radiation
problem in a planar medium. They used the lattice Boltzmann
method (LBM) combined with the finite volume method (FVM)
for the radiative information.

In many heat transfer problems, temperature varies over a wide
range, and thus in such problems, the assumption of constant ther-
mal conductivity leads to inaccurate results [6,8,9]. However, with
consideration of temperature dependent thermal conductivity, the
energy equation becomes nonlinear and its solution thus becomes
difficult. Transient conduction-radiation problems with tempera-
ture dependent thermal conductivity have been reported in Refs.
[8,9].

Because of the hyperbolic nature, solutions of heat transfer
problems with non-Fourier effect are relatively difficult [5-7].
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conduction, radiation, temperature dependent thermal

Consideration of temperature dependent thermal conductivity in
such problems brings additional difficulty. Chen [6] studied ef-
fects of temperature dependent thermal conductivity in a non-
Fourier heat conduction problem in a 1D planar finite, and also a
semi-infinite medium. However, he did not consider the effect of
radiation. The present work is, therefore, aimed at solving a 1D
conduction-radiation problem considering non-Fourier effect in
conduction and temperature dependent thermal conductivity. The
problem is solved using the LBM in which unlike conventional
numerical methods, nonlinearity does not manifest in the solution
methodology. Radiative information is computed using the FVM.
The medium boundaries can be maintained at constant tempera-
tures, and/or fluxes. A pulse heat generation may remain present in
a specific region in the medium. For the effects of the temperature
dependent thermal conductivity, temperature distributions in the
medium are studied for different values of the extinction coeffi-
cient, the scattering albedo, and the conduction-radiation param-
eter.

2 Formulation

Consideration is given to a 1D planar participating medium
having initial temperature Tg. For time t>0, its west boundary is
raised to temperature Ty, while its east boundary is kept either at
temperature Tg or heat flux ge. Both boundaries can also be insu-
lated when the medium contains a localized pulse energy source
g*. Except thermal conductivity, all other properties of the me-
dium are constant. Thermal conductivity k is assumed to vary as

k=ko(1+'T) 1)
where y' is the measure for the variation of thermal conductivity
with temperature.

For the problem under consideration, the governing energy
equation is given by
JT J J
PPSCAL S
at IX oxX
where p, ¢, qc, and gg are density, specific heat, conductive flux,
and radiative flux, respectively.

Assuming finite propagation speed of the conduction wave
front gc, heat conduction equation is given by [2,3]

)
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dqc aT

'—+qc=-k— 3

a7t Oc X (3)

where with temperature dependent thermal conductivity, the ther-

mal relaxation time I'=a/C?=Ky(1+y'T)/pc,C?=To(1+y'T).
From Egs. (2) and (3), we get

( )(rﬂ+£> ko(L+ T)ﬂ K (5T>-%+ :
PO\ 2 )T 4 o7\ ox ax

I 9%R _
_F[at( X g)] @

It is to be noted that because of the non-Fourier effect, in one
hand, the problem becomes hyperbolic, and because of tempera-
ture dependent thermal conductivity (Eq. (1)), the problem is
highly nonlinear.

The divergence of radiative heat flux dgg/dx in Eq. (4) is given
by

4
PR _ g - w)(477£ - G*) (5)
IX T
where B is the extinction coefficient,  is the scattering albedo,
and G* is the incident radiation.

In dimensionless form, defining time &, distance #», temperature
6, coefficient of temperature dependent thermal conductivity v,
radiative heat flux Wg, conduction-radiation parameter N, volu-
metric energy source g, and incident radiation G in the following
way:

e
= X 7/_X _Tref Y=7 lref
, (6)
Or KeeiC Xzag>'< G
O'Tref 4a0'T,ef Kref TrefC T i/ T
In dimensionless form Eq. (4) is written as
#6 (ae)
1+ v0 + 1+ 0 +
2(952( ¥0) § =( v)m]z bl
1]|0¥ 1 AL
[ R+ 70>—(—R)]
T AN 2 o€\ an
109
+>5 4 g ™
2 0&
In dimensionless form d¥g/dn appearing in Eq. (5) is written as
A\d XB(1-
7R _ (M>(4’7TH4_G) (8)
an T

By considering the effect of radiation dWg/d7, volumetric heat
generation g, and non-Fourier heat conduction, the equivalent
form of Eq. (7) in the LBM is given as [7]

A
H(m+eAgE+AD = (e - f[fi(n, 8- 10(5.6]

Aéw; \ Vg W
- 208y - (W)—R + 20k
_ (©)
i=1,2,...b

where f; is the particle distribution function, e;=A»n/A¢ is the
velocity, 7 is the relaxation time, fi(o) is the equilibrium distribu-
tion function, and b is the number of particle distribution func-
tions considered in a lattice. For the 1D planar medium problem

under consideration, with D1Q2 lattice, with temperature depen-
dent thermal conductivity, the relaxation time 7 is given by [9]
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1 Ag
T=e—i2(1+ 7'9)+? (10)

Temperature and heat flux W are computed from the following

[7]:

(11)

V=2 efi(l+y0)
i=1

In Eq. (9), the equilibrium distribution function is given by [7]
fl(o) = Wi0+ yiei\lf (13)
where w; and y; are the weights corresponding to the ith direction,
and they are given by
W1:W2:y1:y2:% (14)

Solution procedure for a conduction-radiation problem using the
LBM can be found in the work [7,9] of the group of the lead
author. The procedure for computing radiative information has
been discussed in Ref. [7]. Interested readers can refer to refer-
ences given in Refs. [7,9].

(12)

3 Results and Discussion

To validate results of the present work for non-Fourier conduc-
tion with temperature dependent thermal conductivity (y# 0.0),
Figs. 1(a)-1(c) compare results with those given by Chen [6].
With constant thermal conductivity (y=0.0), for a conduction-
radiation problem, in Figs. 1(d)-1(f) results are compared with
those given by Chu et al. [5]. For comparisons made in Figs. 1(a)
and 1(b), the medium is semi-infinite, while for other cases, the
medium thickness is unity. While comparing results of the present
work with those given in Refs. [5,6], in the LBM-FVM, 100
lattice/control volumes were found sufficient, and in the FVM, no
significant change was observed beyond 12 rays.

In all three cases considered in Figs. 1(a)-1(c), initially the
entire system is at temperature #=6=0.0. For the cases consid-
ered in Figs. 1(a) and 1(c), for time £>0.0, the west boundary is
raised to 6y=1.0; whereas in the case of the results in Fig. 1(b),
the west boundary is subjected to a nonlinear boundary condition
having radiative cooling. The boundary condition for this case is
represented as

o=~ Ecbly + dhy (15)
In Eqg. (15), the first and second terms on the right-hand side
represent heat dissipation by thermal radiation and prescribed heat
flux, respectively. In the above equation, the dimensionless E,
= a;oaq®/k*C* and the wall heat flux ¢4, =0,,/qye and its magni-
tude were taken as unity. In the E, formula, a5 is the surface
absorptivity. For the results given in Fig. 1(c), east boundary is
insulated (Wg=0.0).

For the comparison made in Figs. 1(d)-1(f), for non-Fourier
heat conduction with constant thermal conductivity (y=0.0) along
with radiation, initially 6=6z=0.0. After time £>0.0, the west
boundary is raised to 6,=1.0. The results are compared for dif-
ferent values of w, B, and N. From Figs. 1(a)-1(f), it is observed
that results of the present work compare well with those of Refs.
[5,6], which have considered different solution methodologies.

In the following pages (Figs. 2—-4), we present results for the
effect of radiation along with non-Fourier conduction having tem-
perature dependent thermal conductivity in a finite medium with
unity thickness. For the purpose of validation, in Figs. 1(a)-1(c),
results of the present work were compared for y=-0.1,0.0,+0.1.
From these figures, it is observed that for y=-0.1,0.0,+0.1, no
significant change in @ distributions occurred. Therefore, in the
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Fig. 1 Validation of results for dimensionless temperature @ distribution in a pure
conducting medium (@=1.0) with three values of vy (=-0.1, 0.0, and 0.1) for (a) a
temperature boundary condition problem, (b) a nonlinear boundary condition (sur-
face radiative cooling) problem with E,=0.0, and (c) a mixed boundary condition prob-
lem. Validation of results for @ distribution in a non-Fourier conducting-radiating me-
dium with constant thermal conductivity (y=0.0) for (d) g=1.0, N=0.25, (e) 8=0.1, N

=0.25, and (f) p=1.0, N=0.025.

following pages, while considering the effects of the variable ther-
mal conductivity, we present results for y=-0.25, 0.0, and +0.25.

First we consider the case of a finite medium, which is initially
at 6=6z=0.0, and for time £>0, its west boundary is maintained
at a,=1.0. In Fig. 2, we present results for this case.

With extinction coefficient 8=1.0 and conduction-radiation pa-
rameter N=1.0, @ distributions for scattering albedo »=0.0 and
0.5 are given in Figs. 2(a) and 2(b), respectively. It is observed
from these figures that for a lower value of w, the effect of y is
less. It is further observed that the effect of v is significant in the
upstream of the wave front. In the downstream, its effect is almost
negligible. In the upstream of the wave front, 6 is much higher
than the downstream, and thus the effect of y on 6 becomes rela-
tively much less in the downstream of the thermal wave front.

With »=0.5 and B=1.0, for two values of the conduction-

Journal of Heat Transfer

radiation parameter N=2.5 and 0.25, effects of y on @ distribu-
tions have been given in Figs. 2(c) and 2(d), respectively. By
considering results given in Fig. 2(b) for N=1.0, we can compare
results for three values of N=0.25, 1.0, and 2.5. It is observed
from Figs. 2(b)-2(d) that in a radiation dominated case (N
=0.25) (Fig. 2(d)), the effect of y manifests in the downstream of
the thermal wave front. This effect is relatively more at an early
stage (£=0.3). In the upstream, the effect of y is more in the
conduction dominated case (N=2.5) (Fig. 2(c)). From these fig-
ures, it is also observed that the difference between the maximum
and the minimum temperatures at the thermal wave front de-
creases with a decrease in N. With a decrease in N at the wave
front, the maximum and the minimum temperatures also increase.
The above trend is owing to the fact that when radiation domi-

NOVEMBER 2009, Vol. 131 / 111302-3



1 N T T T LI 1 N T T T LI
BN N ¥=025 E N S ¥=025
r N y=00 r N y=00
osk N o y=-025] o8l N e —.y=-1025]
1 NS\ i s NN i
- \.\\ N | »\.\\ -
[ B NS o [ NS
506 RN 4 Sosf ~N .
- - - - .
[ s [
g 5 £=03 £=0.6 g i £=03 £=0.6
g 0.4 r - g 0.4 r B
- [ (=
I B=10 B
02F ©=00 . 02f ©=05 .
r N r N
0 L L T IR BN n X 0 L L M IR i ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Distance (b) Distance
1 T T T LI 1 T T T LI
R =025 S R =025
LN ¥=00 1 i RN ¥=00
o8} N - - - -7=-025] o8k e R S eE
NN NN\
I \\7 N I DN
- N J - .
Soel NN 1 Sosf N
— | N L I
e | s [ £=03 £=06
8 | &=o03 £=0.6 8 |
£ L i L ]
Eo4r Eo4r
- [ (=
[ B=10 1 L op=10 ko 1
02F =05 ] 02F 4-05 ‘\.\\\\ 1
I N=25 N=025
0 I ‘L|—v—v—v—o—-=.=‘ 0 L. . v Y
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
() Distance () Distance
1 T T T LI 1 T T T LI
N y=025 N N y=025
\\\\\ v=00 I \\\\ y=00 1
o8k N — - = -y=-025] 08k N - y=-025]
i AN 1 3 S i
B NS B N \T\\ R
n AN\ L N
goe— RN . So.e— N\ .
[ [C ’
g | g |
Eoal &=03 §=06 1 Eog4f &=03 §=06 ]
(4] - Q L
[ i = B
I B=o0.1 | B=05
02F  _0s ] 02F =05 ]
[ N=10 [ N=1.0 ]
0 L. 1 L L L . ) I T s i mr
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
() Distance ( Distance

Fig. 2 Dimensionless temperature @ distribution in the medium for temperature
boundary conduction problem for (a)w=0.0, (b) @=0.5, (c) N=2.5, (d) N=0.25, (e) B

=0.1, and (f) B=0.5

nates over conduction (for a lower value of N) during a particular
time, because radiation propagates faster than conduction, the
overall effect on augmentation of temperature will be more pro-
nounced, and only for this reason the effect of -y becomes visible
on @ distributions in the downstream of the thermal wave front
(Fig. 2(d)).

For the three values of v, in Figs. 2(e) and 2(f) along with Fig.
2(b), we study the effect of the extinction coefficient 8 on tem-
perature @ distributions in the medium. It is observed from these
figures that for an optically thicker medium (higher values of B),
both in the upstream and downstream of the thermal wave fronts,
temperatures are more (Fig. 1(b)). Because @ in the downstream of
the thermal wave front is less, the effect of y is not visible. For a
lower value of B (Fig. 2(e)), @ distributions are similar to pure
conduction cases.

In Figs. 3(a)-3(f), we present results for a finite medium in
which for time £€>0.0, its west boundary is subjected to a con-
stant temperature 6,,=1.0, and its east boundary is insulated Wg
=0.0. Initially (£=0.0), the system is at temperature 6=0.0. For

111302-4 / Vol. 131, NOVEMBER 2009

three values of y (=-0.25, 0.0, and +0.25), in these figures, @
distributions have been shown at four time & levels.

In Figs. 3(a) and 3(b), the effect of y on temperature 6 distri-
butions have been studied for the scattering albedo w=0.0 and
0.5, respectively. It is seen from these figures that with the passage
of time, the difference between the maximum and the minimum
temperatures at the thermal wave front decreases. When the me-
dium scatters less energy, the rate of energy distribution is fast
such that the change in temperature is also fast.

In Figs. 3(c) and 3(d), the effects of conduction-radiation pa-
rameter N on @ distributions have been studied for three values of
v. From these figures, it is observed that in the radiation domi-
nated case (lower values of N), the temperature difference be-
tween the upstream, and the downstream points of the thermal
wave front is reducing. This is due to effect of faster energy dis-
tribution in a radiation dominated case, and because of this, at a
particular time, temperature is more for lower values of N. Al-
though temperature is more in a radiation dominated case, the
effect of vy is less. This is because of the dominance of radiation
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over the effect of y on energy distribution. This is evident from
Fig. 3(d) in which, with the passage of time, the results of y
=0.25 is found to coincide with the results of y=0.0.

For three values of v, in Figs. 3(e) and 3(f), results are pre-
sented to study the effect of B on 6 distributions. From these
figures, it is clearly observed that at lower values of B, the me-
dium is conduction dominated. The drop in temperature at the
thermal wave front is observed to be more for lower values of B
(=0.1), and this drop is found to reduce as the value of B in-
creases. Although the magnitude of temperature is high for higher
values of B, the effect of y on @ distribution is less. This is be-
cause for higher values of B, the effect of radiation on energy
distribution is more than that of 7.

For three values of y (=-0.25, 0.0, +0.25), in Figs. 4(a)-4(f),
we present results for a finite medium in which for time 0<¢
= A&, near its west boundary in the region 0.0=1= A, an instan-
taneous volumetric heat source (g=500) is applied. In this case,
initially the entire system is at #=0.0, and for time ¢>0, both the

Journal of Heat Transfer

boundaries are kept insulated. Effects of radiative parameters,
namely, o, N, and B on @ distributions, are presented for three
different values of y.

It is observed from Figs. 4(a)-4(f) that the energy source,
which was applied in the region 0.0=1= A near the west bound-
ary during the unit time step 0<£=A¢, propagates in the me-
dium, and its spatial range 0.0=1= A % remains constant. With the
passage of time, however, its energy content decreases.

In Figs. 4(a) and 4(b), results are given for »=0.0 and 0.5,
respectively. From these figures, it is observed that the slope of
temperature in the region of heat source is very high for «=0.0
(Fig. 4(a)). For @=0.0, in the spatial range of the heat source, the
slope of 6 is positive until £=1.0, the time by which the heat
source reaches the east boundary. After that, it reflects back to-
ward the west boundary, and its slope becomes negative. This
change in slope takes place after every reflection from the bound-
ary. vy is found to have effects on @ distribution in the spatial range
of the heat source and with the passage of time, since 6 decreases,
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this effect also decreases. With an increase in w, at any time, the
magnitude of @ is found to increase in the spatial range of the heat
source, and in other region it is found to decrease. This is because
in the radiation dominated case (for a lower values of ), energy
distribution from the spatial region of the heat source is fast.

In Figs. 4(c) and 4(d) along with Fig. 4(b), the effects of N on
0 distributions for three different values of vy are studied. From
these three figures, it is observed that in a radiation dominated
case (Fig. 4(c)), the slope of @ profiles at the heat source is posi-
tive until time £=1.0, and after reflection, the slope changes its
sign. In a conduction dominated case (N=2.5) (Fig. 4(c)), the
slope of @ is almost zero, and at any time the effect of  is more.
At any time, the magnitude of @ in the spatial range of heat source
is more in the conduction dominated case. This is again owing to
the fact that in a conduction dominated case, energy distribution
from the heat source zone is slower. The effect of vy is also more
in a conduction dominated case.

In Figs. 4(e) and 4(f) along with Fig. 4(b), the effect of 8 on @
distributions for three values of y are shown. It is observed that at
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lower values of B(=0.1), the medium is conduction dominated,
and the slope of @ profile at the heat source is negative. At higher
values of B(=1.0), the medium is radiation dominated, and in this
case, the slope of @ profile at the heat source is positive. From
these three figures, it is observed that the slope is changing from
negative to positive between 8=0.0 and 1.0. For low values of
B(=0.1), the effect of y on @ distribution is more because the
medium is conduction dominated, and 6 is also high. At higher
values of B(=1.0), due to the influence of radiation, the effect of y
on @ distribution reduces, and the profile of 6 for y=0.25 is found
to match with that for y=0.0 in Fig. 4(b).

4 Conclusions

Non-Fourier conduction and radiation problem with tempera-
ture dependent thermal conductivity was studied. Thermal con-
ductivity was assumed to vary linearly with temperature. The
analysis was made for a 1D planar absorbing, emitting and isotro-
pically scattering, radiating, and conducting medium. Three dif-
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ferent sets of boundary conditions were considered. The case of
pulse localized volumetric heat source in the medium was also
taken up. The problem was analyzed using the LBM in which the
radiative information was computed using the FVM. Cases for
which results were available in the literature, results of the present
work were found to compare well. For three values of the coeffi-
cient of thermal conductivity v, temperature distributions in the
medium were studied for the effects of the extinction coefficient,
the scattering albedo, and the conduction-radiation parameter. In
all the cases, it was observed that in the radiation dominated case,
temperature was more and the effect of v on temperature was less.
In the case of pulse heat source in the medium, in the radiation
dominated case, temperature was less in the spatial range of the
heat source and the effect of y was less. At other locations, an
opposite trend was observed.

Nomenclature
b = number of propagation directions in a lattice
¢, = specific heat at constant pressure
C = speed of thermal wave
e = propagation velocity (A»n/A¢)
E, = dimensionless radiative parameter.
f; = particle distribution function in the ith
direction
29 = equilibrium particle distribution function in the
ith direction
= incident radiation
volumetric energy source
thermal conductivity
spatial length, where the energy pulse is
applied
= conduction-radiation parameter
= heat flux
dimensional time
= dimensional temperature
= length of the geometry
X = space variable

—=xa ®
Il

X~ Z
Il

Greek Symbols
a = thermal diffusivity
B = extinction coefficient
y" = measure of variation of thermal conductivity
with temperature

Journal of Heat Transfer

v = coefficient of variation of thermal conductivity
with temperature

= dimensionless distance

density

= Stefan—-Boltzmann constant,
5.67x 1078 W/m? K*

= relaxation time in the LBM

thermal relaxation time in non-Fourier

conduction

w = scattering albedo

6 = nondimensional temperature

& = dimensionless time

SIS
Il

R
Il

Superscript
* = dimensional variable

Subscripts
C = conductive
R = radiative
ref = reference

E,W = east, west
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1 Introduction

We consider the numerical solution to the coefficient inverse
problem in a parabolic equation with the initial value and bound-
ary value

J au(x,t) au(x,t)
5<k(x)7) - T =f(x,t) (x,t) €[0,1] X [0,1]
u(x,0) =h(x) (1.1)
uop=o0 MY,
X
subject to the additional specification
u(x,t)=g() tel0,1] (1.2)

where x* € (0,1).

Such problems arise, for example, while modeling the flow in
homogeneous and isotropic porous media. The solution function
u(x,t) can be interpreted as a pressure head, the coefficient k(x)
may be interpreted as a hydraulic conductivity for the porous me-
dium [1-4]. The existence and uniqueness of the solution to such
problems are discussed [5,6]. A new method, which is established
in reproducing kernel spaces, is presented to solve such problems
of identifying the unknown coefficient k(x). By using special tech-
niques, the identification of the space-dependent coefficient k(x) is
formulated as a lower triangular linear system, which is not ill-
posed. In detail we explain the method in Secs. 2-6.

2 Several Reproducing Kernel Spaces

In this section we define several reproducing kernel spaces
based on smoothness requirements on the solution function u(x,t),
and the given boundary value condition in Eq. (1.1).

The inner product space W4[0,1] is defined as follows:

W,[0,1]={ u(x)|lu is an absolutely continuous function, u’
e L¥0,1])}

endowed with the inner product

1Corresponding author. Also at the Department of Mathematics, Harbin Institute
of Technology, Weihai, Shandong, P.R.China.

Contributed by the Heat Transfer Division of ASME for publication in the Jour-
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Determination of Unknown
Coefficients in Parabolic
Equations

In this paper, we consider solving for a coefficient inverse problem in the parabolic
equation. A new numerical method for the identification of the space-dependent coeffi-
cient is developed in a reproducing kernel space. The coefficients can be solved by a
lower triangle linear system. Some numerical experiments are presented to show the
efficiency of the proposed method. [DOI: 10.1115/1.3154627]

Keywords: parabolic equations, coefficient inverse problem, reproducing kernel space

1
u’'(x)v’ (x)dx

U(),v(x)w, = u(0)v(0) + f

0

and with the norm [[uflw, = \/(u, uw,.

It is proved that W;[0,1] is a complete reproducing kernel
space [7], that is, for every u(é) e W4[0,1], and every fixed x
e[0,1], there exists P,(&) e W4[0,1] such that

(U(&), P(E)w, = u(x)

where

P(&) = {“g‘ £=x 2.1)

1+x, £€>x

P,(&) is called the reproducing kernel of W;[0,1]. Other repro-
ducing kernel spaces are described similar to W,[0,1].

”

W,[0,1]={u(t)ju” is an absolutely continuous function, u
e L0,1]}

The inner product and norm are defined by

1 1
W®, o), = 2 u (@) + f u"(t"(t)dt

i=0 0
and [Juflw,=/(u, Uw,-

WS,[0,1]={u(x)|u” is absolutely continuous function, u”
e L[0,1], u(0)=u’(1) =0}

It is endowed with the inner product

2 1
U0,y = 2 u(0)w(0) + f u®(x)v@(x)dx

i=0 0
and norm [|ull, = y/(u, U,

V[0,1]={u(x)|u’ is an absolutely continuous function, u”
e L%0,1], u'(0)=0}

In Ref. [8], the author gives the general methods of solving
reproducing kernels. We can use the methods to prove that
W,[0,1] and W5[0,1] are reproducing spaces, and solve their re-
producing kernels. We denote the reproducing kernels of W,[0,1]
and W5[0,1] by Q(s) and R,(y), respectively.
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3

1
I-—+-tp2+1t) t=
g T2+ 7
Qi = &3 (2.2)
1-—+-ty(2+ t>
g o2t i
4 32 2 2 243 3¢3 33 4
g g K¢ K8 38 3¢ xgt X &
i _ 25 2 2s 26 26 _25 S =
R(8) = 7(§ x¢) (3X+3§+X +§)+ 28 112+ 21 84 +336(X+§) 42 1344 120 E=x 23)
X - Xg X X§4 X2§3 5252 X3§2 X3§3 X3§3 46 454 .
SXAXE) - 2B+ BEF R+ ) = 2 2 T2y -—- >
7 X9 14( A O e s Y2 e T3 Y T T T
I
Since the inner product space V[0,1] is a subspace of W,[0,1], is a bounded operator.
it is also a reproducing space. We denote the reproducing kernel Proof.
by Gi(). 1 2
Now we consider a reproducing kernel space W(D) based on LI, = (f Ju(¢0) 0) §> f (M) dx
the region D=[0,1]x[0,1]. Suppose that {p;(x)}:z; and {q;(t)}i2; ' 0 0 ot
are the complete normal orthogonal system of W;[0,1] and 1 )
W,[0,1], respectively. In Ref. [9], W(D) and its inner product are < 2[ (M) dx (3.3)
defined by 0 at

ux,Blu(x,t) = > c;pix)a;t),{cij} e 12

ij=1

W(D) =

and

WD, 006w = 2 ¢ ull = V(U Uy
ij=1
where u(x,t):ijﬂcijpi(x)qj(t) and v(x,t):Eszldijpi(x)qj(t). We
have the following Propositions 2.1 and 2.2 for the inner product
space W(D), see Ref. [9].
PropPosITION  2.1. If
e W(D), then

ux,t),0(x, )y = <U1(X),Ul(X)>w3<U2(t)yvz(t)>w2 (2.4)

ProposITION 2.2. W(D) is a reproducing kernel space and the
reproducing kernel is

Kixn(& 1) =Re(£)Qu(7) (2.5)

where Q,(7) and R,(£) are given in Egs. (2.2) and (2.3), respec-
tively.

We have imposed the two boundary conditions in Eq. (1.1) on
the reproducing kernel space W3[0,1]. Therefore, any function
u(x,t) e W(D) automatically satisfies the boundary conditions of
Eg. (1.1).

u(x, ) =uy () u,(t) ,v(x, ) =v1 (X)vy(t)

3 Transformation of the Coefficient Inverse Problem

In this section, we discuss the inverse problem in the reproduc-
ing kernel space W(D), on which the boundary conditions in Eq.
(1.1) have been imposed. Integrating both sides of Eq. (1.1) from
x to 1, applying the initial and boundary conditions and letting t

=0, it follows that
1 ’0 1
- f ‘9”(51 Lae= J fE0dE (B.)

du(x,0)
aXx

Note that h’(1)=0. Now we define an operator L:W(D)

—W,4[0,1] as follows:

1
0
(Lu)(x) = f %df

LEMMA 3.1. The operator L:W(D) — W;[0,1] defined in Eq. (3.2)

- k(x)

(3.2)
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Since R,(£€)Qq(7) is the reproducing kernel of W(D), it is known
that

u(x,t) = (u(€, 7). R(&)QAu(M)w

st =< u(E 7RO Q‘(”)>
w
au(x,0) 9Q(7)
P < u(& 7),Ry(é) o t:0>W
3u(x,0) IQ(7)
ot = [[ullwlR«(&)llw, A | ol

[Rx(&)llw, is @ continuous function on the interval [0, 1] that is, it
holds that [Rx(&)llw, =M. Assume that

H dQi(7) =M
- 2
It =ollw,
then we have
Ju(x,0
B ET

Hence, we get
H(LU)(X)”Wl = 2M;M,|lullwM;M,

Hence, the original inverse problem is transferred into the fol-
lowing operator equation in the reproducing spaces W(D):

(Lu)(x)=F(x) ue W(D) (3.4)

subject to the initial condition in Eq. (1.1) and additional condi-
tion (1.2), where

1
F(x):—k(x)h’(x)—f f(£0)d¢ (3.5)

4 Space Decomposition

In this section the technique space decomposition used for the
method is described in detail. For a dense set {x;};z, of interval
[0,1], let
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¢(X) =P, (X) (4.1)

where P,(&) is given in Eq. (2.1). For every u(x) e W4[0,1], it
follows that

U, @i)w, =ulxy) i=1.2,... (4.2)

Let L* denote the conjugate operator of L, and we use the follow-
ing notation:

S, = (g (x,t) i=1,2,... (4.3)

LEMMA 4.1. L* is a bounded operator from W4[0,1] to W(D), and
i(x,t) can be expressed in the form

1
i = 20 J R(HIE 1212,  (4d)
7 J,
1 1
R e f dx f R(HIE  (45)
where
o, POy _ 700 wo

dtan dtan

Proof. Since L is bounded, it is natural to expect that L™ is
bounded. By the properties of the reproducing kernels P,(),

Ry(8), Qu(m), and K, (&, 7), we have
lpi(xvt) = <(¢I(§1 77)7 Kx,t(gr 7/) )W = <(L*QDI)(§1 7/)1 RX(é)Qt(ﬂ))W
=({¢i(x), LR Q) (X)w, = L(R(E)Qu(m))(X))

_aQy0) (*
=y f in(g)dg

0 1
<l//|(X,t),l,b](X,t)>W: <(LK¢I)(X1t)l%§7)] Rx(g)d§>
Xj W

1
=<fpi(-),(L[mf Rx(§>d§D<->>
an X; W,
1
=L(%(°) | Rx(f)df)(xi)
7 Jy

_PQy0) [* f !
= —(7t e L dx ) R (&d¢

1 1
= le dxf Ru(£)d&
X X

Let {t_pi(x,t)}i“:l denote an orthonormal system that derives from
the Gram-Schmidt orthonormalization process of {i;(x,t)}iZ;.

Therefore we can express _z,//i(x,t) in the following form:

B0 = Biah(x ) 1=1,2,... 4.7)

k=1
where gy are coefficients of orthonomalization.
LEMMA 4.2. ;(x,0) is an orthogonal system in W5[0,1] and

— - c? - -
(W00, 44X, Oy = XD D (48)
1
where C, is defined in Eq. (4.6) and
C,= dQ0) | _ 9Qo(0) (4.9)

In |l 97
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Proof. In Eq. (4.4),
<l,[fi(x,0), wj(xlo)>W3

1 1
:<M J Ry(Hdg, 200 J Rx(§>d§>
an X an X;

1 1
- cg< J R.(§)dé, f RX<§>d§>

W3

(4.10)
Wy
On the other hand,
<¢i(X,t)d/Jj(th)>W
O 1 0 1
- (20 J Ry(edg, 220 f R (e
an X an X; W
1 1
<%(O)M> < | raoe | Rx<e>de> @11
yi an wy \ Jy X; W,
Note that
<aQt<0> aQt<0>> i <aQt<0> aQt(o>>
an " dn [w, \ dm = In [,
0
= %<Qt(ﬂl)lm>
m an |w, =0
- aR{ﬂzl}(O) =&2Q0(0):
dmadn|,- Jdn '
(4.12)

From Egs. (4.10)—(4.12), we can conclude that

CZ
<¢i<x,o>,¢,-<x,0)>w3=C—jwi(x,t),w,-(x,t)m (4.13)

Since {?/xi(x,t)}f":l is an orthonormal system of W(D), we further
obtain Eq. (4.8).
Let

i=1

S = span({yi(x,H}2y) = {u(x,tnu(x,t) = cith(x1),c IZ}

and S* denotes the orthcomplement space of S in W(D). So
W(D)=S®S*.
LEMMA 4.3.

S+ =Null(L)

where Null(L) denotes the null space of L.
Proof. For every u(x,t) e S*, we find

(Lu)(xi) = ((Lu)(x), @i(X)w, = U, 1), (X, hHw =0 i=1,2,...

since {x;}j; is dense in the interval [0,1], then

(4.14)

(Lu(x,t))(x) =0

for arbitrary x € [0, 1]. That proved u(x,t) € Null(L). On the other
hand, if u(x,t) e Null(L), that is, it satisfies (Lu(x,t))(x)=0, we
can conclude that

U, g, tHw = (Lu)(x;)) = 0

Thus u(x,t) e S*.
LEMMA 4.4. u(x,t) e S* if and only if du(x,t)/dt};=o=0.
Proof. For any u(x,t) e S*, there exists
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Yougt)
fx = de=0 (4.15)

by Lemma 4.3 and the definition of the operator L in Eq. (3.2).
Differentiating Eq. (4.15), we get du(x,t)/dt|=q=0.
If du(x,t)/dt|i=o=0, on the other hand, then (Lu)(x)=0 for any
x €[0,1]. Furthermore, we have u(x,t) € S* by Lemma 4.3.
Thus we have S+=W3[0,1]®V[0,1]. Take a set of points Z
={(&,m1),(&,7),...} as a dense set of region D=[0,1]X[0,1]
and put

XD =R(X)G, (1 j=1,2,...

Therefore, {pj(x,t)}}’;1 is the basis of S*. The orthonormal basis
fpj(x,t)}]-’i1 can be derived from the Gram-Schmidt orthogonaliza-
tion process of {p;(x,)}Z;.

]
Ej(xit):zﬁ}klpl(xlt) j=l,2,...
1=1

Note that W(D)=S@& S, hence, {z_pi(x,t)}filu{ﬁi(x,t)}}”:l is an or-
thonormal basis of W(D).

5 The Numerical Method

In this section, the method of solving the operator equation
(3.4) is explained in detail.

THEOREM 5.1. Assume that (k(x),u(x,t)) be the solution of Eq.
(3.4), then

o i 1
ux, =, >, Bn(- k(sph'(s)) - J f(f,O)d§> (X, 1)

i=1 I=1

+ D aipi(x,) (5.1)

i=1
where ¢;(x,1), pi(x,t) and B, are defined in Sec. 4, k(s)) and «; are
to be solved according to the initial and additional conditions.

Proof. Since {z//i(x,t)}filu{pi(x,t)}j-il is an orthonormal basis
of W(D), we have

UGH = 5 (U w6t + 2 (U, ppwpi(x,D
i=1 i=1
= E 2 Biu, lf/|>w_</fi(X,t) + E (U, pdwpi(x,t)
i=1 I=1 i=1
= 2 (LU, @, dix, B + 2 (U ppwpi(x.)

i=1 I=1 i=1

let a;=(u, pi)w and apply Eq. (3.5), hence,

223..F<s.>¢.<x t>+2 apxt)  (5.2)

i=1 I=1

therefore, Eq. (5.1) is obtained.
In terms of the unknowns «;, we can get them by applying the
additional specification (1.2).

0 1
g = "% )E<EB.|F(S|))EB.| f Re(©de+ S a0

an I=1 | i=1

u(x,t) =

(5.3)
we use C(k) to denote
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1
C(k) = 2(23..%.))23.. f (HdE (5.4

which is a linear combination of unknown values k(s;). So

00 =C X2+ S a0 55)
Y i=1
Let t=0 in Eq. (5.5), we then have
9(0)=C(k) jS L E aipi(x",0) (5.6)
i=1

Dividing the difference in Egs. (5.5) and (5.6) by t, we get

dQ0(0)

7,0) _ )
+ E al?)(x * ,t)
i=1

g(t) - g(0) an

t =C(k) ~p(<,0)

t

(5.7)

Finding the limit at t=0, and noticing that the limit of the second
term on the right is equal to 0 since Gy(n) V[0,1] and
Q(0)/dt|=g # 0, we thus have demonstrated that C(k)=Cj is a
constant irrelevant to k(s;). So we have

S a0 =gt - ¢, 220 &Qt(o)

i=1

Taking t,€[0,1] 1=1,2,..
about «;

., we get the infinite linear system

9Q:(0)
an

> api(Xt) =g(t) - C

i=1

(5.8)

t=t,

THEOREM 5.2. The coefficients k(s;) can be solved by the following
lower triangular system:

1
ZZBn( k(S|)h’(S|)-f f(§,0)d§>

C1|1
o

= (09, (%, 0)hw, = 2 ai(pi(x,0), #5(x, 0,

i=1

(5.9)

Proof. Setting t=0 in Eq. (5.2) and applying the initial condition
gives us

h(x) = > > BiF(s)#i(x,0) + > aipi(x,0)  (5.10)
i=1 I=1 i=1

Simplifying the above formula, we have
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Table 1 The error of coefficient k(x) (with eight items in each series)

True solution

x

Approximate solution

Absolute error

Relative error

4.984375
4.9375

4.859375
4.75
4.609375
4.4375
4.234375

@I~ @l v IS Wlw IN -

4.984301041435037
4.937419317929127

4.859288628808751
4.749908974073891
4.609280353724557
4.437402767760745
4.234276216182457

0.00007395856496295039
0.00008068207087319479

0.0000863711912488796

0.00009102592610865656
0.00009464627544275572
0.00009723223925472979
0.00009878381754280241

0.000014838302170780775
0.000016340939603856617
0.000017774451745224567
0.00001916372010611093

0.000020533850878972076
0.00002191197066021489

0.000023329563896958997

Table 2 The error of coefficient k(x) (with 16 items in each series)

X True solution

Approximate solution

Absolute error

Relative error

L 4.99609375
3 496484375
5 490234375
7 4.80859375
9 468359375
L 452734375
13 433984375
15 412109375

4.996080272577284
4.964828882640552
4.902327691266218
4.80857669845436

4.683575904205057
4.527325308518295
4.339824911393927
4.121074712831783

0.000013477422715624243
0.000014867359447556794
0.000016058733781854073
0.00001705154564035638

0.000017845794943127657
0.000018441481705266938
0.00001883860607332366

0.000019037168216939904

2.697599313926108 X 1078
2.9945361258149875 X 1076

3.2757365058365314 X 107
3.54606918214226e X 107°
3.8102926712696508 X 1076
4.073372344277703 X 107
4.340867767237367 X 107
4.61946689723045 % 10

Table 3 The error of coefficient k(x) (with 16 items in each series and an artificial error 104

to the right end)

True solution

x

Approximate solution

Absolute error

Relative error

L 4.99609375
3 4.96484375

ER 4.90234375
z 4.80859375
2 4.68359375
u 4.52734375

13 4.33984375
L 4.12109375

4.996085272577282
4.964833882640548

4.902332691266211
4.808581698454347
4.683580904205

4.527330308518159

4.339829911393702
4.121079712831503

8.477422717589889 X 1076
9.867359452186975 < 1076

0.000011058733789148789
0.000012051545652980167
0.000012845795000160365
0.000013441481841347525
0.00001383860629822209

0.000014037168496905394

1.6968130556380039 X 107
1.987450070925438 X 1076
2.2558105468546766 X 107
2.5062578549625084 X 1078
2.742729390801638 X 1076
2.9689642516379724 X 107°

3.188743932542262 X 107°
3.4061870856802146 x 107

Table 4 The error of coefficient k(x) (with 16 items in each series and an artificial error 1004
to the additional condition)

X True solution

Approximate solution

Absolute error

Relative error

L 4.99609375
3 4.96484375

5 4.90234375
z 4.80859375
N 4.68359375
u 4.52734375
13 4.33984375
15 4.12109375

4.996085575289186
4.964834732225137

4.902334009598814
4.808583407410293
4.683582925659638
4.527332564346846
4.339832323471773
4.121082203034261

8.174710814046193 X 107°
9.01777486284061 % 1078

9.740401186064673 X 107
0.000010342589707335037
0.000010824340361814677
0.000011185653153944486
0.000011426528226721189
0.000011546965739128723

1.636223137265422 X 1078
1.8163293139062916 X 1076

1.9868905641665543 X 107
2.1508599999318996 X 107
2.3111238839205932 X 107
2.4706939450466964 X 107
2.632942329343317 X 10
2.8019256035773686 X 107
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E o

> BiF)#(x,00 =h(x) - X aipi(x,0)  (5.11)
i=1 I=1 i=1
Making inner product with :pj(x,o) on both sides of Eq. (5.11)

and applying Lemma 4.2, the lower triangular system of equations
has been built.

6 Numerical Examples and Conclusion

In this section we present some results of numerical experi-
ments using the numerical method described above. The following
is a parabolic equation with initial, boundary, and additional con-
ditions.

9 du(x,t) ) dux,t) _
&x(k(x)—ax ) - f(x,t) (x,t) €[0,1] X[0,1]
u(x,0) =h(x)

uO.D=0 “u(1H=0
IX

subject to

u(x*, ) =g(t)
where h(x)=10(x2-2x), f(x,t)=100+42x-61x2+t(10+4x-6x3),
and x*=0.6, g(t)=-0.84(t+10). The true coefficient k(x)=5-x?,
and the true solution of the parabolic equation u(x,t)=(x?-2x)(t
+10).

The results of determination of k(x) illustrated in Tables 1-4 are
obtained by truncating the two series in Eq. (5.1). Table 1 is the
result of choosing the first eight terms in both series. Table 2
shows the results of choosing the first 16 terms in both series. As
seen from the tables, approximation is improved by increasing the
number of nodes. The last two examples have been done to con-
trol the sensitivity of the method to errors. Artificial errors 107
were introduced into the right end in the third example and con-
ditional condition in the fourth example. As seen in Tables 3 and
4, the error almost never affects the results of the method. The
method of solving the problem was tried on different tests, and the
results we observed indicate that the method is stable and gives
excellent approximation to the solution.

7 Conclusions

In this paper, we consider solving one-dimensional inverse
parabolic problem. We presented a stable numerical algorithm for
identifying the space-dependent coefficient in a parabolic equa-

111303-6 / Vol. 131, NOVEMBER 2009

tion. Numerical results show that the proposed method is effec-
tive. It will be very interesting to expand our work to higher
dimensional cases.

Nomenclature

W;i[0,1] = reproducing kernel spaces on the interval [0,1]
(i=1,2,3)
W(D) = reproducing kernel space on the region D
=[0,1]x[0,1]
P«x) = reproducing kernel of W;[0,1]
Qi(s) = reproducing kernel of W,[0,1]
R«(Y) = reproducing kernel of W5[0,1]
Kyt(&,7) = reproducing kernel of W(D)

L = the operator of the operator equation trans-
ferred from the original equation
L* = the conjugate operator of L
{xi}iz; = a dense set of the interval [0,1]
@i(X) = the value of P4(x) at £=x;
G, ) = (L*¢)(x,1)

{#itiZ1 = an orthonormal system of {¢;}72;
Bix = coefficients of orthonomalization
S

= span{yi(x, O}y
S+ = the orthcomplement space of S in W(D)
{pj}jz1 = the basis of S*
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1 Introduction

Heat conduction in multilayer composite solids has a variety of
engineering applications such as buildings, industrial furnaces,
nuclear reactors, turbines, rockets, space craft, and high-tech de-
vices and instruments, and thus has been a topic of continued
research interest [1-10]. Excessive heat generation within a body
can cause unbounded temperature or thermal instability. Heat can
be generated in different ways. For heat generated by electric
current passing through a solid or by radioactive decay in the
region, the rate of hear generation is usually independent of tem-
perature. However, in many chemical and physical processes, heat
production taking place in a body can be a function of tempera-
ture. Examples are diverse, including high heat generation during
cement polymerization [11,12], Ohmic heat generation in a com-
posite superconductor [13] and dual-phase lag head conduction in
a superconductor [14], temperature dependent heat sources in a
stagnation point flow [15] and in a magnetohydrodynamic flow
[16], heat generation in the earth’s crust and upper mantel that is
attributed to the radioactive decay of certain chemical elements
such as U, Th, and K [17], and the ever-increasing temperature
and power of a nuclear reactor when its temperature coefficient of
reactivity is positive [18]. Heat generation rate in some cases can
be modeled as a linear function of temperature (for example, see
p. 404 of Ref. [1], and Refs. [13,14,16,17]). The stability and
feedback control of heat conductions with temperature-dependent
internal heat sources have also been studied by several authors
[19-22].

The current study is concerned with the thermal stability of heat
conduction in composite solids with heat generation that is at a
rate proportional to the temperature. By stability we mean the
temperature of a composite body in consideration is bounded. The
stability of heat flow in single-layer finite slabs and rods has been
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well studied, and an upper bound of linear heat source has been
derived. For instance, the nondimensional heat equation u,,+bu
=y, in region 0<x<1 is stable if b+s; <0, where s, is the largest
eigenvalue of the heat equation with b=0 (see p. 405 of Ref. [1]).
For multilayer composite solids, due to discontinuous distribu-
tions of material properties, stability analysis is difficult. One di-
rect way to examine stability is to compute the eigenvalues of the
related heat equation. This approach obtains a stability bound by
trial and error, and is numerically intensive. In Ref. [19], a stabil-
ity test without computation of system eigenvalues is presented.
This method applies Nyquist criterion to a composite solid based
on a virtual feedback-loop formulation. Because the gains of heat
source are embedded in the transcendental open-loop transfer
function, determination of a stability bound inevitably relies on
numerical simulation of a sequence of Nyquist plots.

In this work, a new stability test is proposed for heat conduction
in one-dimensional multilayer composite solids. In the develop-
ment, a spatial state formulation [23,24] is first used to derive a
characteristic equation for system eigenvalues; a root locus analy-
sis is then applied to the characteristic equation, yielding a stabil-
ity criterion. This criterion gives an upper bound of heat source
for thermal stability and relates the degree of excessive heat gen-
eration to the number of unstable (positive) eigenvalues. The sta-
bility test requires minimum numerical effort, does not need in-
formation about the eigenvalues of the composite solid, and is
applicable to various spatial distributions of inner heat sources.
The convenience and efficiency of the proposed method are dem-
onstrated in three examples.

2 Problem Statement

Consider a one-dimensional n-layer composite solid shown in
Fig. 1, where x; is the spatial coordinate of the interface between
the jth and (j+1)th layers, and xq and x,, denote the left and right
boundaries of the body, respectively. Here x,=0 and x;=I;+I,
+---+Ij, where j=1,2,...,n, with Ij=xj—xj_1 being the thickness
of the jth layer. The heat conduction in the jth layer is governed
by the partial differential equation

NOVEMBER 2009, Vol. 131 / 111304-1



Layer1 Layer2 Layer3 Layer n

X X X, X3 X,

n-1 n
}_. x

Fig. 1 An n-layer composite body

PT(x1) X 9T(x,1)
N TBTD =TI xe X xg),
]
i=1,2,....n @

where Tj(x,t), \j, and «; are the temperature, thermal conductiv-
ity, and thermal diffusivity of the layer, respectively, and B; is a
non-negative parameter describing heat generation within the
layer. In the literature linear heat generation rate usually takes the
form A;+B;T;(x,t), where A; is a constant (for example, see p.
404 of Ref. [1] or Ref. [17]). The A; is dropped from Eg. (1) for
simplicity in analysis as it does not affect the stability results.

With the perfect thermal contact assumption, the matching con-
ditions at the layer interfaces are given by

Ti(x,0) = Tja(x;,0)

2
aTi(x:,1) ITi1(X,1)
- )\j_J_J_ == N\ju1
4 X

for j=1,2,...,n-1. Partial thermal contact at the layer interfaces
will be addressed in Sec. 4.1. The boundary conditions of the
body are of the following general forms:

dT1 (X, 1)
IX

at x= Xoy a1 + aoTl(Xo,t) =0 (33.)

at x=x,, by +bTh(Xp,t) =0 (3b)

AT (Xp, 1)
X
where constants ag, a;, by, and b, are assigned to characterize

different types of boundaries.

The objectives of this work are to investigate the stability of
heat flow in the above composite body and to determine the sta-
bility bound of linear heat source.

3 Approach

For convenience in stability analysis, the heat equation (1) is
revised as

FPTi(x,t) N dT;(X,t)
N T BT = S e D],
]
_ (4)
1=1,2,...,n

where w is a nondimensional and non-negative parameter, which
shall be called heat gain. When w=0 there is no heat generation
inside the composite body, and when w=1 Eq. (4) becomes the
original Eg. (1). In sequel, a spatial state formulation in the s
domain [23,24] and a root locus analysis are applied to obtain an
upper bound of w for the thermal stability of the body.

111304-2 / Vol. 131, NOVEMBER 2009

3.1 Spatial State Equations. Laplace transform of Egs. (2),
(3a), (3b), and (4) with respect to time gives

TS (3 2w, xebiax)  ©)
Ix (Ij )\J

Tj(les) = Tj+1(Xj,S)

B 3 (6)
dTi(X;,s) dTi41(X,8)
iX:8) _ +1X
TN TN T
iT1(X8) =
alM +a9T1(X0,8) =0
_ (7)
IT1(Xn, S -
b1M +0oTh(Xn,8) =0

[

where the overbar stands for Laplace transform, s is the Laplace
transform parameter, and zero initial temperature has been as-
sumed. For the jth layer, defining the spatial state vector

Ti(x,9)
~ _ _ 8
{m(x,9)} N aT (%) @)
X
which automatically satisfies the matching conditions (6), i.e.,
{;]j(xjrs)}:{;?ﬁl(xjrs)}r J :1121 1n_1 (9)
and reduces Eq. (5) to the first-order state equation
[ ~
E{Wj(x,S)F [Fi®N7(x.9)}  x e [Xj-1.%] (10)

where

1
[Fi(s)]= 0 A_J with ;= \li—u% (11)
INT: Y S

The boundary conditions (7) are also cast in the matrix form

[MpH71(%0,9)} + [Ny {77 (x,8)} = 0 (12)
with
[Mb]—[g 0 ] [Nb]—[bo bl/)\n:| (13)

The heat conduction problem is now described by the equivalent
state form, Egs. (10) and (12).

3.2 Characteristic Equation. The characteristic equation of
the composite body is derived through the use of a formulation
given in Refs. [23,24]. The solution of the state in Eq. (10) is

{7(x,9)} = P07 (x,9)) X e X)) (14)
where the exponential matrix, according to p. 326 of Ref. [1], is
given by

1
h(B: — sj )
o[F i = cosh(B;x) )\jﬁjsmh(ﬁjx) 15)
\;B; sinh(Bx)  cosh(B;x)
Successive use of Egs. (9) and (14) leads to
{7(Xn,8)} = [P (s, ) K 7 (%0,9)} (16)
where
[D(s, )] = elFa®Th ... glFas)lzg[Fi(9)]ly 17)

Substitute Eq. (16) into the boundary condition in Eq. (12) to
obtain
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A(s, W)

B g

Fig. 2 Schematic of the characteristic function A(s, #) versus
S; o, is a parameter defined in Eq. (21); circles (O) are the
eigenvalues of the composite body

([Mp] + [NpI[D(s, ) D{71(%o,9)} = O (18)
A characteristic equation then is
A(s, p) = det([Mp] + [Ny ][P(s, 1)]) = 0 (19)

whose roots are the eigenvalues of the composite body.
The characteristic function A(s, u) has the following two prop-
erties.

(P1) function A(s,u) is continuous for —co<s<<cc and u=0,
and is bounded in any finite region of s and w. The function at
s=0 and =0 has a finite value

n

I agh; ajb
A(0,0) = aghy >, L + =L - =10 (20)

SN M N

(P2) Define a parameter
B:a:
o = max (—ﬂl) (21)
1=j=n N

]

Let u (=0) be fixed. For s < uoy, some of B; in Eq. (11) are
imaginary and the exponential matrices in Eg. (15) contain
sinusoidal functions. As such, A(s,u) is oscillatory in the re-
gion — <s < uoy,. For s> uoy, all B; are real and A(s, ) is
nonoscillatory. This indicates that A(s, u) is infinite as s— +oo.
Thus, given a finite w, A(s, ) has an infinite number of roots in
the negative region s<<0, and a finite number of roots in the
positive region s>0.

A schematic of the characteristic function A(s,u) versus s is
shown in Fig. 2, where the circles are the eigenvalues of the
composite body.

3.3 Root Locus Analysis. Denote the eigenvalues of the com-
posite body by s, (u), where k=1,2,..., which are the roots of the
characteristic equation (19) and are dependent on the heat gain u«
in Eq. (4). As w varies from zero to infinity, an eigenvalue makes
a trajectory in the complex plane, which is called root locus. The
body is said to be thermally unstable if at least one eigenvalue has
positive real part, which renders the temperature of the body un-
bounded. The body is thermally stable if all the eigenvalues have
negative real parts.

Claim 1. For any u=0, all eigenvalues s (u) of the composite
body described by Egs. (4), (2), and (3) are real.

Proof. The eigenvalue problem for the composite body is de-
scribed by

2. :
a o) _ (ﬁaf -,qu)vj(X), x & [Xj-1,%] 22)
i

] dXZ

j=1,2,...,n, where s is an eigenvalue and v;(x) is the associate
eigenfunction that also satisfies the matching and boundary con-
ditions (6) and (7). By Eq. (22), write
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J (éJE - ,LLBJ)EJ(X)UJ(X)CIX

n Xj 2 n
_  do;(x
E)\JJ Uj(X) U(z )dX:E
j=1 Xj-1 dx =1 i ]

(23)

where vj(x) is the complex conjugate of v(x). Integral by part and
application of the matching and boundary conditions eventually
reduce Eg. (23) to

(9 | doio |2

-2\ L= dx -3 -3,
: dx
j=1 Xj

(24)

"\ Xj
:E (EE—ILLB]-)‘[ |vj(X)|2dX

o
] Xj-1

where Jy and J,, are real and non-negative numbers arising from
the boundary conditions. Because every integral in Eq. (24) is
real, so must be s. O

According to Claim 1, all the root loci lie on the real axis as u
varies. Arrange the root loci in a descending order (sq(w)
>5,(u) >S3(w)>--+). It can be shown from Eq. (18) that the
eigenvalues of the current problem are distinct. The root loci start
at the eigenvalues of the body with no heat source (x=0), in
which case 0=5;(0)>s,(u)>s3()>---. The equality s,(0)=0
holds only when the composite body is insulated (ag=by=0).
Physically, the negative eigenvalues are due to the nature of heat
conduction through a body without any thermal input. This can
also be seen from Eq. (24) with w=0.

Now increase w from zero. By Property P2 in Sec. 3.2, function
A(s, ) becomes oscillatory in the positive region 0=s< uoy,
(see Fig. 2). This implies that A(s, w) starts to have some positive
roots if w is large enough. Further increasing u will expand the
region 0=s< uoy,, and as a result produce more positive charac-
teristic roots. The larger the w, the more positive roots. This leads
to Claim 2.

Claim 2. The root loci s;(w) start at the eigenvalues of the body
with no internal heat source («=0). As x continues to increase,
root loci sy(w) travel rightward along the real axis, cross the origin
one by one, and migrate into the positive region s> 0.

By Claim 2, there is a critical value w of u at which the first
root locus arrives at the origin, namely, s;(u¢)=0. For u< ug, all
eigenvalues lie on the negative real axis (s,<<0). A w that is
slightly larger than u¢ will push the first eigenvalue into the posi-
tive region (s;>0) and cause thermal instability. Because s;=0
and u,, satisfy the characteristic equation (19), the following sta-
bility criterion is in order.

THEOREM 1. The composite body described by Egs. (4), (2), and
(3) is thermally stable if the heat gain w satisfies u << e, Where
the upper bound ., is the minimum non-negative root of the
transcendental equation

AO,u)=0 (25)

The composite body is thermally unstable with at least one posi-
tive eigenvalue if ©> w.

For an insulated body (ag=hy=0), u,=0 by Eq. (20). In this
case the body is thermally unstable when it has any inner heat
production (u>0). This of course is well known from an energy
balance viewpoint.

It can be shown that for x>0,

agh a,b
A0, p) = aobow + L () = T2 por(w)
\ Ay Ay

b, —
) (26)

)\1)\n

where the functions ¢; are given by
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*++[D][Dy] (@7)

with

L sin(y uBi/\il;)
—sin(\VuB/\ |
VBjA; P (28)

If Bj=0 (no heat source in the jth layer),

1l
D= |
(D)) [o 1 ]

Because ¢;j only contain sinusoidal functions of Vu, A0, ) is
continuous and bounded in any finite region of u. Thus, Eq. (25)
can be easily solved by standard root-searching techniques.

According to Claim 2, all root loci s, () move in the positive
direction of the real axis as u increases. The transcendental func-
tion A(0, w) has infinitely many roots. Each time when u reaches
one of the roots, one more root locus crosses the origin and moves
into the positive region. This gives the following result on the
number of unstable eigenvalues.

THEOREM 2. Let wy be the non-negative roots of A(0,u)=0
arranged in an ascending order, (0= <ur<uz<---). The
composite body has m unstable (positive) eigenvalues if the heat
gain w in Eq. (4) is such that um<u<pmer. If w<pq=pe, the
body has no unstable eigenvalue.

In summary, the root locus analysis presented in this section
yields an upper bound w of heat gain, which can be computed
according to Theorem 1. The number of unstable eigenvalues for
a given value of w can be obtained by Theorem 2. Because Eg.
(26) is given in an explicit analytical form, the stability bound and
the correlation between excessive heat generation and the number
of unstable eigenvalues can be easily determined, without the
need for system eigenvalues and intensive computation.

cos(V uBi/Ajl)
[Dj]: 1)

(29)

4 Extension of Stability Analysis

The stability analysis in Sec. 3 is extended to composite solids
with thermal resistance at layer interfaces and continua with non-
uniformly distributed parameters.

4.1 Partial Thermal Contact at Layer Interfaces. For a
composite body with partial thermal contact at its layer interfaces,
the heat equation and boundary conditions are the same as Egs.
(4) and (3), respectively. The matching conditions at the layer
interfaces are modified as

T (xi,t)

- )\j_J;_ =hy(T;(x;, 1) = Tjea(x;,1)
(30)
_)\‘ﬁT»(x»,t) N AT (X,1)
j j+l
oX ox

where h; is a conductance coefficient, with its reciprocal describ-
ing the thermal resistance at the interfaces [25-27]. For a finite h;,
the temperature is discontinuous at the layer interface. As h;— ce,
the temperature becomes continuous and perfect thermal contact
is resumed.

The matching conditions (30) are written in a spatial state form:

{7(x,9)} = [C H7(x;,9)} (31)

where
. _[1 1/hj] 2
[Ci]= 0 1 (32)

Matrix [C;] reduces to an identity matrix when the interface has
perfect thermal contact. The characteristic equation of the body is
of the same form as Eq. (19), but with
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[D(s, w)] = elFn®M[C, _ TelFr-1®&Th-1... [C,JelF2®Nlz [ C elF1e)
(33)
Because [C;] are constant matrices, the characteristic function has
the same properties P1 and P2, as given in Sec. 3.2. Hence, Theo-
rems 1 and 2 are directly applicable here. In estimation of the

upper bound u. and system eigenvalues, one only needs to
modify matrix [®(s, u)] according to Eq. (33).

4.2 Nonuniformly Distributed Continua. The heat conduc-
tion in a nonuniform body is described by

9

oxX

()\(x)&%T(x,t)) + uB(X)T(x,t) = p(x)c(x)w, x e (0,L)

(34)

where L is the length of the region, the physical parameters \, p,
and c are functions of x that are positive in (0,L), function B(x)
has non-negative values and is piecewise continuous, and w is a
nondimensional non-negative heat gain. Because exact solutions
are difficult to obtain for such a nonuniformly distributed system,
a semi-analytical method is introduced. Following Refs. [23,24],
the nonuniform body is approximated as an n-layer composite
solid as described by Egs. (4), (2), and (3), with the layer param-
eters given by

\ = )\(Xj—1)2+ )\(Xj)y B = B(xj_1)2+ B(x;)
(35)

A p(Xj_D)C(Xj-1) + p(xpc(x))

C(j 2
One may also use other formulas like \j=\(xj-1), Bj=B(xj-1),
)\J/aJ:p(XJ_l)C(XJ_l), or )\J:)\(XJ), BJ:B(XJ), )\J/aj
=p(xj)c(x;). The spatial space formulation and stability analysis
given in Sec. 3 are valid for the approximated system. As the
number n of the layers increases, the computed stability bound

and eigenvalues should converge to those of the original system
(34).

5 Numerical Examples

To demonstrate the stability results, three examples are consid-
ered: a three-layer composite body, the same three-layer compos-
ite body with partial thermal contact at a layer interface, and a
nonuniform body. In numerical simulation, all physical param-
eters are assigned nondimensional values. In solving transcenden-
tal equations (19) and (25), the Newton-Raphson method is ap-
plied.

5.1 Example 1: A Three-Layer Body. Consider a three-layer
composite body with an inner heat source in the middle layer. The
layer parameters of the body are chosen as follows:

Layer 1:\;=1, oay=1, B;=0, ;=1
Layer 2:)\2:2, a2:1, 82:1, |2:1
Layer 3:A\3=3, a3=1, B;=0, ;=1

The body has convection boundary conditions at both ends:

JT1(Xg, t
)\1 1(0)

=h T1(X,t)=0
X LT1(X,1)

ﬁTS(X&t)
Ng———— + hgTs(x3,t) =0
3 IX R 3( 3 )
with h =2 and hg=0.75, which in the form of Eq. (3) give ag=
-2, a;=1, by=0.75, and b;=3. A plot of characteristic function
A(0, ) versus w is given in Fig. 3. Listed in Table 1 are the first
eight roots of A(0, w)=0. By Theorem 1, the upper bound of w for
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Fig. 3 Characteristic function A(0, #) versus heat gain u

thermal stability is we = 4. Thus, the heat conduction in the com-
posite body is stable if ©<1.2021.

Although not needed in stability prediction, the eigenvalues of
the composite body are computed for the purpose of validation.
Listed in Table 2 are the first ten eigenvalues s, for ©=0, 1, 10,
50, 100, and 200, which are obtained by solving Eq. (19). The
table reveals the trend of the root locus of the body. As u in-
creases, all the eigenvalues moves rightward along the real axis.
For a large enough w, one or more positive eigenvalues appear.
The number of unstable (positive) eigenvalues confirms Theorem
2. For instance, for «=100 that falls between w3 and w,, the body
has three unstable eigenvalues. Additionally, the characteristic

Table 1 Roots of A(0,#)=0 in Example 1

=

My

1.20210
22.1930
81.4684

180.176
318.355
496.010
713.142
969.753

O~NOO T WN R

Fig. 4 Characteristic function A(s,u) versus s for heat gain
p#=0 and 10

function A(s,u) are plotted against s for =0 and 10 in Fig. 4,
which shows the rightward migration of the eigenvalues as the
heat gain w increases.

5.2 Example 2: A Three-Layer Body With Thermal Resis-
tance at Layer Interface. Consider the same composite body as
in Example 1, except that there is partial thermal contact between
the second and third layers:

ITo(X,t
), Tt
ax

By Eq. (33), [®(s, u)]=eF[C,JeF20)2eF191 | jsted in Table 3
are the first four roots of Eq. (25), with the conductance h.=1, 10,
100, 1000, and <. The body has perfect thermal contact when
h.=cc. From the table, w; decreases from 1.20210 to 0.98902 as
h. varies from o to 1. Therefore, thermal resistance (1/h;) at the
layer interface reduces the stability bound (we=mq). Listed in
Table 4 are the eigenvalues of the composite body for x=1 and
50, and for h,=10, 100, and «. The thermal resistance at the layer
interface increases the eigenvalues, which in turn makes the sys-
tem less stable.

= he(T(Xp, 1) = Ta(Xp, 1))

5.3 Example 3: A Nonuniform Body. A body of unit length
(L=1) is governed by Eq. (34), with parameters

Table 2 The first ten eigenvalues s, of the composite body in Example 1

k n=0 pn=1 ©n=10 =50 ©=100 =200
1 —0.2385 —0.1510 2.7327 20.6032 44.6630 93.7723
2 —2.1562 —2.0261 —1.1819 7.2606 27.9873 745171
3 —5.6959 —5.5517 —4.6698 —2.1565 3.6423 42.2897
4 —10.7207 —10.5565 —9.0279 —5.2032 —3.3913 3.8288
5 —19.569 —19.4099 —18.0005 —12.1648 —5.9491 —3.6309
6 —28.5951 —28.4346 —27.1371 —23.1984 —18.2255 —6.0320
7 —40.3761 —40.2102 —38.6953 —31.8227 —26.5585 —20.8427
8 —56.267 —56.1034 —54.6258 —48.1408 —40.1633 —27.4989
9 —71.0105 —70.8464 —69.4428 —64.5230 —59.3149 —46.1921
10 —89.7344 —89.5681 —88.0607 —81.0916 —72.8471 —63.8146
Table 3 Roots u, of A(0,x)=0 in Example 2

he 1 10 100 1000 ©

1 0.98902 1.17088 1.19883 1.20177 1.20210

Mo 21.7676 22.1292 22.1863 22.1924 22.1930

M3 81.0254 81.4017 81.4614 81.4677 81.4684

M 179.730 180.109 180.169 180.176 180.176
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Table 4 The first ten eigenvalues s, of the composite body in
Example 2

Table 6 The first four eigenvalues of the nonuniform body in
Example 3 (n=number of layers)

pn=1 ©=50 n Sy S, S3 Sy
Sk hc=10 hc:w hc=100 hc:OO u=200<u<pu)
8 —021772  —548221  —17.6024 —38.0190
2 —1.72100 —2.0261 7.45899 7.2606 40 —0.13602  —5.42997  —17.5539 —37.8454
3 —5.21472 —5.5517 —2.08328 —2.1565 60 ~0.12993 —5.42407 —17.5535 —37.8374
4 —10.5537 —10.5565 —5.17314 —5.2032 100  —012514  —541919  —17.5533 —37.8320
5 —16.8146 —19.4099 —12.1391 —12.1648
6 —26.6087 —28.4346 —22.8286 —23.1984 ©=100(p, << pa)
7 —40.2061 —40.2102 —31.5414 —31.8227 8 313460 243604 828007 557821
9 —66.7514 —70.8464  —63.7899 —64.5230 40 36.3522 11.3568 ~751631  —19.9047
10 —89.5637 —89.5681 —80.7003 —81.0916 60 36.5489 11.8962 —~7.31233 ~19.8763
100 36.6873 12.3068 —7.12843 —19.8633
AMX)=2(1+0.25x%), p(x)c(x)=5(1+0.1x), 0=x=1
5 ) heat source must be below a bound ., which is the
B(x) = 10[(0.25)°~ (x= 05,  025=x=0.75 minimum non-negative root of the transcendental equa-
0 otherwise tion (25). Different from single-layer bodies, the stability

Here the inner heat source has a parabolic distribution within the
region 0.25=x=0.75. Let the boundary conditions of the body be
of convective type

aT(0,0)
X

(0) ~hT(0,)=0

o =0

where hg=4 and h;=0.625. In use of the semi-analytical method
given in Sec. 4.2, equally spaced interfaces are considered: x;
=jL/n, where j=0,1,...,n. In computation, the number of layers
is chosen as n=8, 20, 40, 60, and 100. Table 5 lists the first three
roots of A(0, u)=0, which shows fast convergence as n increases.
According to the computed results, the body is thermally stable if
the heat gain w<<u;=2.51419. The eigenvalues of the body with
w=2 and 100 are given in Table 6, which also indicates fast con-
vergence as n increases. For u=2, which is in the stable region,
all the eigenvalues are negative. For x=100, which falls between
roots u, and w3 of A(0, w), there are two positive eigenvalues (s,
and s,). This supports the prediction by Theorem 2.

It is observed from the numerical simulation that a larger n does
not significantly increase the computation time needed to deter-
mine w, and s,. Two special features of the proposed method
attribute to this computational efficiency: (i) function A(s,u) is
smooth and bounded in any finite region and (ii) the computation
by Egs. (19) and (33) only involves simple manipulation of 2
X 2 matrices, regardless of the number of layers.

6 Conclusions

The stability analysis performed in this study yields the follow-
ing two main results.

(@) To maintain thermal stability of heat conduction in a
composite or nonuniform solid, the gain x of a linear

Table5 Roots of A(0, #)=0 in Example 3 (h=number of layers)

n 2% M2 M3

8 3.11273 67.4651 216.5746
20 2.67916 52.3663 185.4359
40 2.57182 48.1362 169.9793
60 2.53922 46.8487 165.0628
100 2.51419 45.8615 161.2592

111304-6 / Vol. 131, NOVEMBER 2009

bound g of a multilayer body may not necessarily be
related to any eigenvalue of the body without internal
heat source.

(b)  The number of unstable eigenvalues of a composite solid
with excess internal heat production is determined by the
roots of function A(0, ). The body has m unstable ei-
genvalues if the heat gain w falls between the mth and
(m+1)th roots of A0, ).

The numerical simulation leads to two observations. First, a
thermally unstable composite body usually has one or two posi-
tive eigenvalues. To have many positive eigenvalues, the heat gain
w of an inner heat source has to enlarge by several orders of
magnitude. Second, thermal resistance at layer interfaces in-
creases system eigenvalues, which in turn lowers the stability
bound w.

The new stability test does not need any information on system
eigenvalues. Function A(0,u) is smooth, which makes root
searching (for determination of stability bound) straightforward,
as has been shown in the numerical examples. Because only
simple operations of 2 X2 matrices are involved in computation,
the proposed method is highly efficient for thermal stability analy-
sis of composite solids with any number of layers and various
distributions of heat source. The results presented in this paper
should provide important information and useful guidance for
control of unstable heat flows in multilayer composite solids in
many engineering problems.
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In this paper we are concerned with the solution of a Robin boundary conditioned

problem associated with the local heat transfer equation. The results are obtained using
both symmetrical system features and expansions of a Boubaker polynomial subsequence.
The yielded profile is compared with some recently proposed models.

[DOI: 10.1115/1.3154623]

1 Introduction

With advances in techniques to deal with problems of heat
transfer in physics, these problems have generated increasing in-
terest over a wide range of areas, including microwave heating,
kinetics in diffusion processes, biophysics, and welding investiga-
tions [1-4].

In recent studies, Masood and Zaman [1] tried to investigate
inverse problem method in order to solve general heat transfer
equations in some particular cases. Vynnycky et al. [2], Haji-
Sheikh et al. [3], and Pacheco-Vega et al. [4] yielded different
numerical solutions to heat transfer problems taking into account
several boundary condition formulations.

In this paper we consider a targeted surface, which receives a
single-pulse from a Gaussian heat source. The resolution of the
heat transfer problem is based on introducing Robin boundary
conditions apart from the main equation. In fact, an appropriate
expression is attributed to the temperature expression in the man-
ner that the major part of the boundary conditions is verified in
advance to main equation resolution. This feature is enabled by
the Boubaker polynomial properties [5-19].

2 Theoretical Investigations

2.1 Problem Geometrical Features. The problem is studied
in a cylindrical coordinate system where the targeted surface rep-
resents the Z-plane (Z=0).

The Gaussian source propagation axis is also the Z-axis (Fig.
1).
The simplified main system of the heat equation under Robin
boundary conditions is

aT(r,ty  _FT(rY) , :
- preat t>0, 0<r<R:{Domain(Q)}
T(O,t) = TO
(1)
IT(R,1)

T(R,t)+L X o = 0:{Domain(dQ)}

T(r,0) =Ty X f(r)

where L is a constant, D is the thermal diffusivity, and f(r) is a
real function that verifies the spatial conditions
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mso for 0<r<R
ar
f(0)=1
(2)
f(R)=0
7t
ar r:O_

System (2) corresponds to many common functions (Gaussian,
cosine, polynomial, etc.).

Solutions for particular expressions of f(r) have been proposed
[20-24].

2.2 Analytic Calculations. For resolution purposes, f(r) is
first expressed as an infinite expansion of Boubaker polynomials
[19] whose interesting properties are detailed in Appendix A.

N
. 1 ~ a,
f(r) = Nlmc{mgl &n B4n<rE>] (3)

where «, are the minimal positive roots of the 4n-order Boubaker

polynomials é4n, R is the maximum radial range (where the tem-
perature is supposed to be the room one), and ¢, are the coeffi-
cients to be determined using the expression of f(r).

In fact, the Boubaker 4n-order polynomials I§4n have the par-
ticular properties

Bun(Ml=0=-2, ¥n>0
OBy (1
Ban(r) =0, Vn>0 (4)
ar |
PBan(r
4”2() =4n(n-1), Vn>0
|

These properties induce the system

N N
. 1 ~ «, 1
f(0)= lim lﬁE :an(rr—”)] =- 26
N-—o n=1 m r=0 n=1
1 N
fR)= lim | =, gném(rﬂ) =0
N—s+o0 2Nn:1 m r=r
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Targeted
surface

Fig.1 Geometrical features. The simplified main system of the
heat equation under Robin boundary conditions.

s )

af(r)
— =0 (5
ar | = Nﬂm 2Nn21§" o ®)
with the constraint
N
2 &=-N (6)
n=1

By the same way, the temperature expression is expressed as a
polynomial expansion

N
1 , a
g =Tox lim {ZNE sn-B4n(rR )} @)

N—+o0

by writing T(r,t)=g(r) X h(t), the main heat equation gives

M _ g

hty ~~ g(n ®)

Since the left term is independent of x and the right one is inde-
pendent of t, it follows that the two expressions must be a con-
stant. In Appendix B, we demonstrate that this constant is negative
(denoted -k2, n=1,2,...,N).

h'(t) == k2h(t), h(t)|—r +L X h'(t)|;=r =0

)

K3
g (r)=—5><g(r)

The first equation is compatible with the second (expressing
Robin condition) and has a simple solution

h(t) = Ae~kit

where A is a constant.
The second equation, along with the initial condition, is written

| iz ()a(s)]

N
1 1 ~ [
=—=x lim| —> k¢ -B (r—")
D NMW[ZNEl én Ban| T
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N
. 1 ;oo [
NILTmlﬁz & B4n<r R ):|
1 N
~ an
|:ﬁn§1 & B4n(rE>:|

by taking into account the initial conditions we have the system

N'szz{ Sy )4“”‘“]

:-%x lim [ZNEkzgnx( 2)]

=A X e |im

N—+oo

(10)
t=0

N—+

N
1 Do
lim lﬁn%g"x( 2)}

N—+oo
=Ax e [im { Egn X (- 2)] (11)
N—+c0 n 1 t=0
System (11) has as a weak solution
k, = %V"[Zn(n “1)]xD
(12)

N N
D E=AX D&
n=1 n=1

Oppositely to the t-dependent solution, the spatial solution is not
unique. Among possible solutions we chose the vector [{] as fol-
lows:

&
4
Q=" (13)
N
which minimizes the functional Hyg as follows:
N
Hus = lE (& —Aen)Z] (14)
n=1
The final solution is hence
N
T =ToX & % B4n<r%) x (eI (15)
n=1

3 Solutions and Discussion

As mentioned in Egs. (3), (13), and (14), the solution depends
on the chosen initial vector [£]. The optimal vector [ ] is asso-
ciated with the Gaussian excitation, and its terms are being calcu-
lated in another study. For the actual model we tried our model on
two elementary sets of initial conditions, expressed by vectors

0

[Zl= (16)

-N x'(.Sl(n—N)
0
-N/2

_ 2
(=] ~V/? (17)
-N/2N
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Table 1 Numerical values (case of the initial vector [{],)

Go=Nx8(n-N) |y,_,

T-Te

4n tn (ky)? 4

4 1.1894 0 (invalid) 0.02188
8 0.5078 0.01031 0.01094
12 0.3114 0.01164 0.00547
16 0.2236 0.012 0.00273
20 0.1742 0.01214 0.00137
24 0.1428 0.01224 0.00068
28 0.1208 0.01226 0.00034

The vectors [£]; and [£], verify both the condition (6).

In Table 1, the relevant numerical solutions corresponding to
the case of the initial vector [{], are given. It was noted that the
error introduced by truncating was less than 6.5%. It was also
noted that the relative contribution of terms with indices beyond
(4n=24) was less than 1/100 (see last terms in Table 1). Truncat-
ing at 4n=20 or 4n=28 is hence justified.

The temperature radial dynamic profile is yielded for the initial
vector [ ], associated with the respective values N=2 (Fig. 2),
N=3 (Fig. 3), and N=4 (Fig. 4).

A more appropriate time-space representation of the solution
corresponding to the initial vector [{], is yielded in Fig. 5.

4 Conclusion

The obtained t-dependent and spatial temperature profiles are
agreeing with many recently yielded results [21-25]. Comparison
of the extinguishing time (=1.075 s) with several models
[24-26] was also satisfactory. Actually the model is prepared to

Gn=Nx8(n-N) |,

. t=05s
\l\.\ t=1.0s
S S t=15s
e e O
X=Xy . t=5.0s
A —A—, X\x\x S
I A~A_‘_‘ ~x.
—A\A \X
—~A_
N

A—A—A~A_p__
A A\A\A\A\A A
~a_
o
A PTA
[

%
~|::—|:1—n—c:—|:|ﬁD-.q;]_Q_,:,_|:|‘D_m~mﬁu‘c“_m

~0~—0-n
o'o T L] T T T v T L2
00 02 04 06 08 10 MR

Fig. 2 Evolution of temperature profile versus time (N=2)

Gu=Nx8(n-N) |y,

Fig. 3 Evolution of temperature profile versus time (N=3)
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Fig. 4 Evolution of temperature profile versus time (N=4)

be applied with a quasi-Gaussian excitation term. This step is
expected to solve the intriguing problem of obtaining non-
Gaussian responses to Gaussian excitations.

Appendix A

In this appendix, we present the 4g-Boubaker polynomial sub-
sequence.

The Boubaker polynomials’ B,(X) explicit monomial form
evoked, while prospected, some singularities for m=4,8,12, etc.
In fact, for the general case, m=4q, the 2q rank monomial term is
removed from the explicit form so that the whole expression con-
tains only 2q effective terms. Correspondent 4g-order Boubaker
polynomials have as a general form

2q
- @-p) } ]
B,,(X)=4 ————CP (= 1)P . x2@a-p)
) %[(m-p) ap|

The few 4qg-order Boubaker polynomials have some interesting
properties

Bagen) = (X* = 4X?+2) X Byq) = Byq-1),  VOQ>1

Bi(0)=-2, B,(0)=0, Bj(0)=4n(n-1)
and

B24(X) = Ba(q-1)(X) X Baqen)(X) = X2 - 1)2(3X? + 4)

vg>1

t=20's 7z ‘
155010 ype? R
>3 1-00's

Fig. 5 Time-space temperature evolution (case of the initial
vector [£],)

NOVEMBER 2009, Vol. 131 / 111305-3



Appendix B
In this appendix, we demonstrate that the problem

h g

has convergent solutions only for negative values of 6.
Let us suppose =0, the t-dependent solution will be

h(t)=a

with a=const.

This solution is convergent but physically invalid since it im-
poses a time-constant temperature in all points. The problem can-
not have non-null solutions when 6=0.

Let us suppose #=k?>0, the main equation will give

kZ
g (r)-BXQ(F)=0

which has solutions

kVD kVD
gin=M cosh<\—r) +N sinh<\—r>
D D

with M and N as constants. Derivative conditions at boundaries
(r=0) and (r=R) give the trivial but unique result M=N=0.

The problem cannot have any convergent or physically valid
solution when #=0.
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Cooling Performance of Arrays of
Vibrating Cantilevers

Piezoelectric fans are vibrating cantilevers actuated by a piezoelectric material and can
provide heat transfer enhancement while consuming little power. Past research has fo-
cused on feasibility and performance characterization of a single fan, while arrays of
such fans, which have important practical applications, have not been widely studied.
This paper investigates the heat transfer achieved using arrays of cantilevers vibrating in
their first resonant mode. This is accomplished by determining the local convection
coefficients due to the two piezoelectric fans mounted near a constant heat flux surface
using infrared thermal imaging. The heat transfer performance is quantified over a wide
range of operating conditions, including vibration amplitude (7.5-10 mm), distance from
heat source (0.01-2 times the fan amplitude), and pitch between fans (0.5-4 times the
amplitude). The convection patterns observed are strongly dependent on the fan pitch,
with the behavior resembling a single fan for small fan pitch and two isolated fans at a
large pitch. The area-averaged thermal performance of the fan array is superior to that
of a single fan, and correlations are developed to describe this enhancement in terms of
the governing parameters. The best thermal performance is obtained when the fan pitch
is 1.5 times its vibration amplitude. [DOI: 10.1115/1.3153579]

Keywords: local heat transfer, piezoelectric fan, fan array, electronics cooling, vibrating

cantilever, heat transfer enhancement

1 Introduction

A piezoelectric fan is a cantilever beam whose vibration is ac-
tuated by means of a piezoelectric element. This element is typi-
cally bonded near the clamped end of the beam and induces a
bending moment at the interface between the cantilever beam and
the piezo element when a voltage is applied. For an alternating
voltage, the beam is set into an oscillatory motion, which in turn
creates motion in the surrounding fluid. This fluid motion has been
shown to provide heat transfer enhancements with low power con-
sumption in an otherwise quiescent region. These devices can also
be configured to meet the geometric constraints of applications
where the limited available volume might preclude the use of
traditional cooling techniques. The fan design can be tailored to
operate at frequencies, which are inaudible to the human ear. Due
to these attractive features, piezoelectric fans have been investi-
gated in the literature for practical cooling applications.

Vibrating cantilever-type structures have been commonplace in
engineering for decades. However, detailed studies of the motion
induced in the surrounding fluid, and more importantly its effect
on heat transfer, have only been recently undertaken. Flow field
measurements around a cantilever vibrating in quiescent air at
relatively small vibration amplitudes (less than 3 mm peak-to-
peak tip vibration) were obtained by Kim et al. [1]. They observed
a pair of counter-rotating vortices from each oscillation cycle.
These vortices were shed from the fan tip as it passed the position
of zero displacement. The maximum velocity occurred in the re-
gion between these two vortices and just beyond the cantilever tip,
and was measured to be approximately four times the maximum
tip velocity. Kimber et al. [2] experimentally measured the local
heat transfer characteristics of piezoelectric fans and developed
heat transfer correlations based on applicable dimensionless num-
bers.

Numerical modeling of the fluid flow and heat transfer induced
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by a piezoelectric fan was also conducted [3]. The flow field gen-
erated by these fans was found to be extremely complex and
highly dependent on the distance from the fan tip to the heat
source, as well as other boundary conditions. A single piezoelec-
tric fan vibrating near a small heat source was also experimentally
investigated to determine the conditions under which the average
heat transfer could be optimized. The factors considered were fan
length, vibration amplitude, frequency offset, and distance from
the heat source. Optimal conditions occurred when the fan oper-
ated at resonance and was oriented normal to the heat source.
Under these conditions, an enhancement of over 375% in the heat
transfer coefficient was obtained when compared with natural
convection alone.

A number of studies have demonstrated the potential of these
fans as cooling solutions and explored implementation and feasi-
bility issues [4-7]. Most of these studies have considered single
fans, and a more complete review of the literature is available in
Ref. [2]. The present work considers the practically important
configuration in which multiple fans are used in arrays, and where
the complexity increases substantially in describing the structural,
fluidic, and heat transfer behavior.

The two-dimensional flow field generated from two flexible
cantilevers was analyzed experimentally by Ihara and Watanabe
[8]. They investigated the behavior for in-phase and out-of-phase
vibration at three different pitches. The cantilevers were sand-
wiched between two large plates, thereby approximating a two-
dimensional flow field. The results were compared with the flow
field generated by a single cantilever in the same experimental
setup, and the volumetric flow rate for in-phase vibration of two
cantilevers was found to be approximately double that of a single
cantilever. Pumping capabilities of an array of vibrating beams
were analyzed by Linderman et al. [9]. Flow rates produced by
micromachined cantilevers in a channel were measured for both a
single cantilever and a linear array of cantilevers. The flow rate
for the single cantilever varied linearly with frequency, length, and
vibration amplitude. Three fans placed in series resulted in a
nearly tripled flow rate. The fan pitch was not considered as a
variable, and the interaction between neighboring fans was not
captured. Mass transfer measurements were obtained by Schmidt
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Fig. 1 Experimental parameters: vibration amplitude (A), gap
from heat source (G), and fan pitch (P). Also shown is the pi-
ezoelectric fan length (L) and width (w).

[10] on a vertical surface mounted near two piezoelectric fans.
The fan blades vibrated out of phase and the fan pitch was kept
constant. Power-law correlations were found to reasonably de-
scribe both maximum and surface-averaged Sherwood numbers
for three different distances from the vertical surface. In each case
the Sherwood numbers formed contours that were symmetric
about the midpoint of fan separation.

Changes in fan vibration parameters influence the flow field and
heat transfer performance. A number of studies [11-13] have
shown that the vibration characteristics of a vibrating cantilever
are altered by the presence of a second oscillating beam. Hosaka
and Itao [11] and Basak and Raman [12] showed that fluidic load-
ing on an array of vibrating beams is greatly altered depending on
the vibration amplitude as well as the pitch and phase difference
between neighboring cantilevers. This was confirmed experimen-
tally by Kimber et al. [13] who observed fluidic coupling between
multiple piezoelectric fans. They measured resonance frequency
and quality factors for fans vibrating in air and observed a de-
crease in viscous drag when the fans vibrated in phase, which
allowed the fans to achieve larger vibration amplitudes for a given
input signal relative to a single fan.

In the present work, local and area-averaged heat transfer char-
acteristics of arrays of piezoelectric fans are investigated. This
work follows previous work by the authors [2] in which the ther-
mal performance of a single fan was studied in detail. Of particu-
lar interest in this work is the increase in performance obtained
with the addition of a second fan, as well as the coupling condi-
tions under which the overall heat transfer rate can be maximized.

2 Experimental Setup and Procedures

The experiments in this work are performed using the setup and
procedures described in Ref. [2] and only salient details are pro-
vided here.

2.1 Experimental Setup. A flat constant heat flux surface is
mounted in a vertical position on an optical table and coated on
both sides with a thin layer of Krylon 1602 black paint having a
known emissivity of 0.95 [14]. Positioned normal to this surface
are piezoelectric fans on two linear stages. This fan orientation
with respect to the heater is identical to that used in Ref. [2] and
is illustrated in Fig. 1. One linear stage controls the distance from
the fan tip to the heated surface, while the other controls the
separation between the fans or the pitch. The side of the heated
surface opposite the fans is also exposed to ambient conditions
and provides access for the infrared camera (ThermaCAM Merlin)
with which full-field temperature measurements are captured,
thereby enabling convection coefficients to be computed on a
point-by-point basis. Two laser displacement sensors (Keyence
LK-G157) are positioned near the fan tip to capture the vibration
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amplitude for each fan independently. Only in-phase vibration is
considered based on past results [8,13], which suggested that in-
phase vibration creates constructive interference within the fluid
domain while the opposite is true for out-of-phase vibration. As
the resonance frequencies of any two fans cannot be matched
exactly, a phase difference exists between their motions even with
identical input signals. Therefore, a two-channel phase-controlled
function generator (Tektronix AFG3022) is employed to ensure
in-phase vibration of the fans in all experiments. A plexiglass
enclosure is built around the entire setup to isolate it from extra-
neous air currents within the laboratory.

The constant-flux heat source design is described in Ref. [2]
and consists of an electrically heated thin stainless steel (type 302)
foil stretched over two 25.4 mm diameter copper rods acting as
busbar terminals. The foil is 0.051 mm thick and 101.6 mm wide.
The required potential drop across the copper rods is achieved
with a high-current power supply. Spring-loaded bolts are used to
accommodate thermal expansion and maintain the heated foil in
tension. A 25.4-mm-thick plexiglass frame holds the heater assem-
bly together and also provides electrical isolation between the two
ends of the heater. The copper rods are separated by a distance of
203.2 mm, thereby providing a heated surface area of 101.6
X 203.2 mm?,

As the thermal conductivity of the copper busbars is much
larger than that of the stainless steel, the busbars can act as a local
heat sink. This localized cooling effect is experimentally found to
be confined to a region close to the busbars; therefore, all the heat
transfer results are obtained for the portion of the heated foil re-
mote from the busbars. A span of the foil 25.4 mm in length
adjacent to each copper rod is excluded from the analysis, leaving
a heated surface area of 101.6 X 152.4 mm? that is considered in
the measurements.

2.2 Local Heat Transfer Calculations. The electrically gen-
erated heat flux (q”gen) is uniform across the entire heated surface
and is computed according to

Vs ) Is
Aheat

1)

n -
q gen —

A local flux balance is employed to determine the convection
coefficient due to the piezoelectric fans. Radiation losses (q” )
occur on both sides of the heater and are quantified from the
measured temperature field and known surface emissivity. As
losses due to natural convection (q”,.) must also be quantified, a
number of experiments are conducted in the absence of fans.
Natural convection temperature maps are analyzed at multiple lev-
els of power input to the heat source, thereby yielding the experi-
mental dependency of the natural convection coefficients on posi-
tion and surface temperature. This information is used during the
forced convection experiments to account for natural convection
losses present on the side opposite the fans. After subtracting
these losses (natural convection and radiation), the remaining
component of the heat generated is dissipated as " ,jz.q by mixed
convection with contributions from both forced convection (due to
the piezoelectric fans) and natural convection. The relationship in
such a regime can be approximated as [15]

Numixed3 = Nung + Nunc3 (2)

Taking each of these Nusselt numbers to be based on the same
length scale, the convection coefficient attributed to the piezoelec-
tric fan (hy,) can be extracted according to

hpZ = (hmix3 - hn(;s)l/3 (3)
where hyixeq is directly found from

Transactions of the ASME



10 20 30 40 50 60 70 80 90
BT R ik

G/A=0.50 G/IA=2.0

G/A=0.01

Single Fan

P/IA=0.5

P/IA=1.25

P/A=4.0

Fig. 2 Experimental convection coefficient contours (hy,) for A=10 mm
and G/A=0.01 (first column), G/A=0.50 (second column), and G/A=2.0
(last column). The first row illustrates single-fan performance at the same
gaps, while the remaining rows are the results from array experiments with
each row representing a different pitch corresponding to P/A
=0.5,1.25,4.0. The heater size shown is 101.6X152.5 mm?. Vibration enve-
lopes are superimposed to show location of fans with solid and dashed

lines depicting the first and second fans, respectively.

ho = q”qen -2 q”rad B q"nc
mixed Ts _ Tw
The convection coefficients reported in the results below exclu-

sively represent the forced convective contribution due to the pi-
ezoelectric fans (hy,).

(4)

2.3 Experimental Parameters. The commercially available
fans used in the experiments are made from a flexible Mylar
blade. As shown in Fig. 1, the overall fan length (L) is 64.0 mm,
the width (w) is 12.7 mm, and the fundamental resonance fre-
quency of the fan is 60 Hz, which is used as the excitation fre-
quency for all experiments. Also illustrated in the figure are the
experimental parameters: vibration amplitude (A), which is half
the peak-to-peak amplitude, pitch (P), and gap (G) from the fan
tip to the heated surface. To explore the effect of each of these
parameters on the heat transfer performance, multiple values of
each are considered. Three amplitudes of vibration are investi-
gated (A=7.5, 8.5, and 10 mm) and are achieved by adjusting the
magnitude of the input voltage signal until the desired amplitude
is reached. It should be noted that this adjustment is also depen-
dent on the proximity of the second fan, as well as the distance of
the fans from the heated surface. These separation distances gov-
ern the viscous drag, an increase or decrease in which causes the
amplitude to change significantly [13]. As the viscous drag is
reduced for fans vibrating in phase, this can result in a large in-
crease (30%) in vibration amplitude without the need for addi-
tional input power. The current investigation, however, is aimed at
the underlying physics responsible for heat transfer. Thus, com-
parisons are made for specified amplitudes, rather than for given
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input signal voltages. It should be noted that the total power con-
sumption for the two-fan configuration at a particular amplitude is
generally less than double to that needed for a single isolated fan.
For example, the total power consumption ranges from 27 mW to
44 mW for the array, whereas the corresponding single fan power
consumption is approximately 22 mW for the largest amplitude
(A=10 mm). The remaining two parameters varied in the experi-
ments (gap and pitch) are expressed as dimensionless quantities
normalized by the vibration amplitude. They range from 0.01 to
2.0 and 0.5 to 4.0 for G/A and P/A, respectively. The uncertainty
associated with the determination of convection coefficients was
estimated in Ref. [2] and is approximately +8%.

3 Results and Discussion

In this section, the experimental results for local convection
coefficients are presented, followed by an analysis of the stagna-
tion and area-averaged heat transfer rates. Comparison is made to
a single fan to illustrate the relative performance of arrays of fans.

3.1 Distribution of Local Convection Coefficients. Determi-
nation of the forced convection coefficient due exclusively to the
piezoelectric fans requires a thorough analysis of the setup in
natural convection conditions. Full details of natural convection
experiments using this setup can be found in Ref. [2] and are not
repeated here; the measured natural convection coefficients were
found to be in satisfactory agreement with predictions from estab-
lished correlations [16] for natural convection from a vertical con-
stant flux heat source. Local forced convection coefficient (hy,)
maps are presented in Fig. 2; the same scale is used in all the
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images to enable direct qualitative and quantitative comparison
between the different cases. Each column represents a change in
gap ranging from small (G/A=0.01) to large (G/A=2) gaps from
left to right. Maps of single-fan experiments from Ref. [2] are
reproduced as the first row in Fig. 2 to further facilitate compari-
son. For the three images in the first row, the fan is located at the
center of the heat source and the vibration envelope is superim-
posed. The solid vertical line in the center of the vibration enve-
lope represents the fan at its zero (undisplaced) position, while the
remaining lines trace the extent of the vibration envelope whose
overall dimensions are twice the vibration amplitude in the hori-
zontal direction and equal to the width of the fan in the vertical
direction. The heater size for all images in Fig. 2 is 101.6
% 152.4 mm?,

For a single fan, a lobed pattern is generated when the fan
vibrates close to the surface; these lobes appear to be symmetric
in both the vertical and horizontal directions, suggesting that the
fluid agitation is roughly similar in the vibration direction, as well
as its orthogonal direction. This behavior transitions to a nearly
circular (or rounded-square) shape for the intermediate gaps,
while the largest gap results in elliptical contours. The cooling
effect is felt over a larger area in the horizontal direction in con-
trast to the somewhat localized behavior seen at small gaps. Al-
though the magnitude of the heat transfer coefficients is lower for
the largest gap, the horizontal extent over which the influence of
the fan is felt is greater.

The remaining three rows in Fig. 2 are nine unique cases se-
lected from the experiments conducted when a second fan is
present, with each row representing a different pitch. The vibra-
tion envelopes of the two fans are illustrated with solid and
dashed lines for the first and second fans, respectively. In-phase
vibration allows overlapping vibration envelopes, as in the case of
small or intermediate pitch (rows 2 and 3 of Fig. 2). The results
for the smallest pitch (P/A=0.5, second row of Fig. 2) exhibit
remarkably similar trends to those observed over the range of gaps
for a single fan. In particular, when the fans are located close to
the heated surface (G/A=0.01), a lobed pattern is once again
realized. This pattern transitions to circular and eventually to a
somewhat elliptical pattern. One difference that may be noted is
the lower magnitude of the convection coefficients for these cases
compared with their single-fan counterparts. For a small gap, this
suggests that adding a second fan at such a small pitch has a
mildly negative effect on the overall performance. However, the
opposite appears to be the case for large gaps as seen in the last
column of Fig. 2, where the magnitude is quite comparable to that
of a single fan but the horizontal coverage has now increased.

As the fan pitch is increased to P/A=1.25 (third row of Fig. 2),
the behavior exhibits some notable differences from that of a
single fan. For the small gap, there now appear to be three zones
of enhanced cooling: two at the extreme horizontal ends of the
combined vibration envelope and one at the center of the two fans.
This is consistent with the findings in Ref. [8], where constructive
interference was observed under certain conditions for two canti-
levers vibrating in phase. A similar trend can also be seen at the
largest gap (G/A=2), where the elliptical contours also show en-
hanced cooling in these three zones.

Maps for the largest pitch (P/A=4) are shown in the last row of
Fig. 2. Contours at the small gap reveal regions where the behav-
ior is similar to two isolated fans, yielding four distinct lobes
surrounding each vibration envelope. However, the convection co-
efficients are somewhat reduced when compared with a single fan
at the same gap. In the limit of a sufficiently large fan pitch, two
separate sets of contours identical to single-fan behavior would be
expected, but it is apparent from the results that this condition is
not fully satisfied for P/A=4. Although the contours are similar,
the presence of the second fan causes the overall performance to
decrease; the same is observed for the intermediate gap (G/A
=0.5). A possible reason for this behavior is discussed in more
detail at the end of this section. The largest gap (G/A=2) does not
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seem to share these characteristics, and the additional region of
cooling between the fans has become more pronounced. It is also
interesting to note the similarities between the G/A=2 maps at the
different fan pitches (far right column of Fig. 2). The general
shape and magnitude of the convection coefficient maps are simi-
lar, regardless of pitch. This is an important consideration for
actual implementation of these fans in arrays. The performance
decreases as the gap increases, but a greater fan pitch can be used
under these conditions without sacrificing any additional perfor-
mance; this implies that a smaller number of fans can be used in
an array under these conditions.

To facilitate a quantitative analysis of the important trends, con-
vection coefficients are presented along the horizontal centerline
of the heat source (y=0) in Fig. 3 for a number of gaps and four
different pitches. In each case, corresponding profiles for a single
fan (G/A=0.01) and for natural convection alone (in the absence
of fan operation) are also shown for comparison; the vibration
envelopes are illustrated by vertical solid and dashed lines for the
first and second fans, respectively. Profiles for P/A=0.5 are
shown in Fig. 3(a), which again illustrates the decrease in perfor-
mance of a fan array compared with a single fan. However, it is
interesting to note that the profiles for all gaps less than G/A=1
are nearly identical in the stagnation region. Two fans at this pitch
appear to be insensitive to relatively large changes in gap (up to
G/A of 1).

An increase in pitch to P/A=1 in Fig. 3(b) reveals the construc-
tive interference previously mentioned. Compared with a single
fan, the stagnation performance has increased by over 10%, and
for the three smallest gaps shown is roughly constant over a large
portion of the combined vibration envelope of both fans. A further
increase in pitch (to P/A=1.25, Fig. 3(c)) shows the three zones
of enhanced cooling. This is most apparent for G/A less than 0.25,
but the effect persists at G/A=0.5. As the gap is increased to
G/A=2, the shape and magnitude of the profile approach the re-
sults seen at this same gap and smaller pitch (G/A=2 and P/A
=0.5 of Fig. 3(a)).

For the largest pitch considered (P/A=4, Fig. 3(d)), the profiles
start to take the general shape of two isolated fans. However, as
previously mentioned, the magnitude of the convection coeffi-
cients is somewhat lower when compared with that from the
single fan, suggesting that truly isolated conditions are not
achieved at P/A=4. Additional experiments conducted at larger
pitches not covered in Fig. 3 yielded profiles with magnitudes
approaching that of a single fan as expected, but the size of the
experimental heat source prevented a pitch large enough to yield
completely isolated conditions. The observed decrease in perfor-
mance of two fans relative to a single fan could be attributed
localized “trapping” of heated air close to the heat source in the
case of the two fans. The ambient temperature in the test setup is
measured approximately 10 cm from the heat source, and local-
ized increases in air temperature near the surface are not captured
in the ambient temperature measurement.

3.2 Stagnation and Area-Averaged Heat Transfer
Coefficients. Correlations for the area-averaged heat transfer for a
single fan were presented in an earlier study [2] in terms of di-
mensionless quantities involving vibration amplitude and distance
from the heat source. The calculation of average heat transfer
coefficients depends on the geometry of the heat source over
which the averaging is performed. In the case of fan arrays, a
rectangular target area is most appropriate for averaging. The ap-
plicable dimensionless parameters in this correlation process are
first defined, after which the stagnation heat transfer coefficient
for fan arrays is considered. The area-averaged heat transfer char-
acteristics of fan arrays are then explored.

3.2.1 Nondimensional Parameters. As discussed in Ref. [2],
the length scale employed in the applicable dimensionless num-
bers is the hydraulic diameter of the vibration envelope given as
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Fig. 3 Convection coefficients (h;,) along the horizontal centerline of the heat source (y=0) over a range of
nondimensional gaps (G/A=0.01,0.1,0.25,0.5,1.0,2.0) for (a) P/A=0.5, (b) P/A=1.0, (c) P/A=1.25, and (d)
P/A=4.0. For comparison, the single-fan (G/A=0.01) and natural convection profiles are also shown. The solid
and dashed vertical lines represent the vibration envelopes of the first and second fans, respectively.

_ 4Aw 5)
2T 2A+w
The stagnation, local, and area-averaged heat transfer is depicted
by Nusselt numbers based on this length scale and the correspond-
ing heat transfer coefficients as follows:

Nug = ho- DEZ’ Nu= hy, - Noz - Dz
k k k
where hg is the local convection coefficient at the center of the
vibration envelope. The average heat transfer coefficient is depen-
dent on the area of the heat source and can be expressed for an
arbitrary geometry as

-1
%=—ffh@%
Acq Agg

The influence of vibration amplitude is captured with a piezoelec-
tric fan Reynolds number based on the maximum tip velocity
(wA) and the hydraulic diameter of the vibration envelope accord-
ing to

Dy,

, Nu= (6)

@)

Repz = _VE (8)

3.2.2 Stagnation Nusselt Number for Fan Arrays. The follow-
ing correlation for stagnation Nusselt number developed in Ref.
[2] is independent of heat source geometry and is expected to
apply for fan arrays as well

Journal of Heat Transfer

G\%
Nug = (Repz)ql[Q(K) +Cz] 9)

Here, q,=0.440, q,=1.451, C;=-0.168, and C,=1.358. Experi-
mental results for stagnation Nusselt number for the fan array are
compared with predictions from this correlation in Fig. 4 for
Rep,=3640, 2920, and 2430, corresponding to A=10, 8.5, and 7.5

o R'epz =3640 v
o Re ,=2920||
o Repz =2430
----- Eq.9) ||

Nu /Red!
0
© GO
I
!
o woo O o
III
'I
III
¥
Il'
I’l

25
G/A
Fig. 4 Stagnation Nusselt number for fan arrays at Re,

=3640, 2920, and 2430 corresponding to A=10, 8.5, and 7.5 mm.
These are compared with the single fan correlation in Eq. (9).
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Fig. 5 Map of W/Nu0 (values in boxes) for a single fan from
the correlation in Eq. (10). Also illustrated are polar coordinates
(r, 0) as defined in Eq. (11).

mm, respectively. Data from the largest Re,, value (3640) agree
well with the single-fan correlation but the results diverge as the
amplitude (Reynolds number) is decreased. As explained earlier,
this deviation is likely due to higher air temperatures near the
heater surface for the fan arrays, especially at low fan velocities
(low amplitudes) when the heated air is not as effectively trans-
ported away. Nonetheless, the single-fan stagnation correlation
may be used to estimate stagnation Nusselt numbers in fan arrays
to a first approximation.

3.2.3 Area-Averaged Array Nusselt Number. A predictive cor-
relation developed for Nusselt numbers averaged over a circular
area in Ref. [2] for a single fan is adjusted here to account for a
rectangular averaging area and takes the following form:

Nu = Nu(1 + [a(#)exp{b(H)r}] P(@)=1P®

=[G T el )

The horizontal and vertical distances that define the heat source
geometry are normalized by the vibration amplitude and fan
width, respectively. The heat source geometry defined by x/A and
y/w was transformed in Eq. (10) to polar coordinates using Eq.
(11). The three parameters (a, b, and P) in Eqg. (10) are well
represented by the following curvefits:

a(0)=1.181-0.0546, b(6) =-0.150-0.0176,

(10)
where

(11)

Single Fan
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A

Fig. 6 [Illustration of unit cell area used in computing Nu. The
horizontal dimension is always equal to half the pitch (x=P/2),
while the vertical dimension can vary depending on the size of
the heat source.

P(6) =39.26 - 6.620 (12)

The correlation in Eq. (10) yields a two-dimensional map for
the normalized Nusselt number (Nu/Nug) for a single fan and is
shown in Fig. 5. The point (x/A, y/w) of (0, 0) equals the stag-
nation Nusselt number (Nu/Nug=1); other points in the map
show Nu/Nug values, which represent the cumulative average
from the stagnation point to the (x/A, y/w) at that location (e.g.,
Nu is approximately half of Nuy for (x/A, y/w)=(4.5, 3)). It
should be noted that the correlation given in Eq. (10) is based on
single-fan experiments performed in Ref. [2], but only covers the
results for G/A=0.5 (unlike the correlation in Ref. [2], which is
valid up to G/A=2). It is necessary to use the adjusted correlation
in order for direct comparison to experimental data from arrays, as
explained earlier. The convection contours from an array would
repeat from one fan to the next, and therefore a unit cell can be
employed to gauge the average thermal performance of the entire
array, regardless of the number of fans. This unit cell is illustrated
in Fig. 6 and has a horizontal dimension of x=P/2 (independent
of vibration amplitude). The vertical extent of this unit cell de-
pends on the size of the heat source and is considered a variable in
the analysis that follows.

The area-averaged Nusselt numbers for fan arrays are first nor-
malized by their respective experimental stagnation values. The
results from G/A=0.5 are then averaged for each pitch and com-
pared with the single-fan contours of Fig. 5. A series of constant
x/A profiles for a single fan and arrays are shown in Figs. 7(a) and
7(b), respectively. Each curve represents a different value of x/A,

Fan Array

—e—P/A=05
—8—P/A=15]]
—0—P/A=20
—<—P/A=30
—>—P/A=40

0 05 1 15 2 25 3
(b) y/D

Fig. 7 Profiles of W/Nuo at different x/A locations: (a) single-fan correlation results from Fig. 5 and (b)
experimental array data at the largest amplitude (Re,,=3640). In the case of fan arrays, 2x is better represented
as P so that the two sets of data correspond to the same area on the heat source.
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Array Enhancement (Experimental)

Fig. 8 Experimental enhancement observed with arrays at the
largest amplitude (Re,,=3640) over the full range of pitches
considered. The horizontal dimension of the targeted heat
source is x=P/2, while the vertical dimension varies with y/w
(values of 3.0, 2.0, 1.0, and 0.5 are shown).

with P=2x shown in the legend for the array curves (Fig. 7(b)).
Note that for the curves in Fig. 7(a) with 2x/A=2.0, the average
Nusselt number is approximately equal to the stagnation value
(Nu/Nup=1) at y/w=0, and falls to 65% of the stagnation value
(Nu/Nuy=0.65) at y/w=3. The increase (or decrease) in perfor-
mance through implementing an array can be found by comparing
results from Fig. 7(a) with those from Fig. 7(b). The smallest
pitch (P/A=0.5) yields little enhancement over its single-fan
counterpart (2x/A=0.5 in Fig. 7(a)). Likewise, the two largest
pitches (P/A=3,4) do not increase the performance over a single
fan. In fact, for small y/w values (y/w<1), these results suggest
a decrease in performance for the array configuration. The most
notable difference occurs for the intermediate pitch (P/A=1.5),
which shows a substantial increase in thermal performance over
the entire range of y/w shown. The average Nusselt number in
this case is 5% higher than the stagnation value (Nu/Nuy=1.05) at
y/w=0 and falls to 75% of the stagnation value (Nu/Nuy=0.75)
at y/w=3. Therefore, the enhancement in this case over the single
fan is 5% for small y/w and 15% (Nu/Nuy=0.75 compared with
Nu/Nuy=0.65) for large y/w.

The enhancement is further illustrated in Fig. 8 for discrete
values of y/w and is plotted against fan pitch. The figure reveals
an optimum pitch of P/A=1.5, with the enhancement dropping
off (or becoming negative) for very large or very small pitches.
This behavior can be approximated using the following Gaussian-
like profile:

2
Enhancement = {clz exp(— [(E - Cz)ca] )} +1 (13)

In this equation, the function Z represents the dependence of the
enhancement factor on the vertical extent of the heat source (y/w)
over which the Nusselt number is averaged, as well as on fan
amplitude. It should be noted that only results for the largest am-
plitude (Re,,=3640) are included in Figs. 7 and 8. The experi-
mental results from additional amplitudes revealed similar behav-
ior with the optimum pitch in the same range. The observed
enhancement is seen to decrease with amplitude, suggesting an
additional dependence on Reynolds number. The dependence on
these two parameters (y/w and amplitude) is captured with the
following power-law relationship:

Journal of Heat Transfer

Table 1 Correlation coefficients for estimation of array en-
hancement (Egs. (13) and (14)). Errors are determined by com-
paring estimated results with those from Fig. 7 and similar re-
sults for smaller amplitudes.

Parameter Value
C, 6.12x 1073
C, 15

Cs 1.667

m 15

n 1.0
Average deviation 2.5%
Maximum deviation 6.0%

m n
Sl
1000/ \w
with exponents m and n being greater than or equal to unity so
that as either variable (Rey, or y/w) increases, the enhancement
will also increase.

The variables Cq, C,, C3, m, and n are all determined from a
least-squares analysis of the data. The results are listed in Table 1
and yield average and maximum errors of 2.5% and 6.0% in ac-
counting for the normalized experimental data. The recommended
correlation for heat transfer coefficients with fan arrays is thus the
product of Eq. (10) (where Nug is found from the single-fan cor-
relation developed in Ref. [2]) and Eqg. (13). The enhancement
factor (Eq. (13)) is presented in Fig. 9 for three Re,, values (3640,
2920, and 2430) and two y/w values (3.0 and 0.5).

4 Conclusions

Local heat transfer coefficients are obtained experimentally for
arrays of piezoelectric fans and compared with the performance of
a single fan. The interaction between neighboring fans is observed
in analyzing both the stagnation and area-averaged thermal per-
formance. A modest decrease in stagnation heat transfer for arrays
is attributed to an increase in effective ambient temperature, as
fans in the array feed heated air to their neighboring fans. For
area-averaged results, conditions exist where the heat transfer in
fan arrays is enhanced relative to the performance of single fans.
The extent of enhancement is found to depend on the vibration
amplitude and pitch, as well as the size of the heat source over
which the heat transfer coefficient is averaged. Correlations are
developed, which describe heat transfer characteristics of fan ar-
rays over a range of operating conditions; a pitch of P/A=15
yields the largest increase in area-averaged thermal performance

1.15 - - - |
—e—Re,_, = 3640 (yiw =3.0)

—5— Re,,=2920 (yiw =3.0)

—o—Re,,=2430 (yw=3.0)
Re,, = 3640 (yiw =0.5)
Re,, = 2920 (yiw=05)
Re,, = 2430 (yiw=05)

1.05¢

Array Enhancement (Eq. (13))

Fig. 9 Expression for array enhancement over single-fan per-
formance (Eqg. (13)) at three amplitudes (Re,,=3640, 2920, and
2430) and two values for y/w (3.0 and 0.5)

NOVEMBER 2009, Vol. 131 / 111401-7



(approximately 15%) when compared with a single fan. As the
pitch becomes smaller or larger, the relative enhancement is found
to decrease.

The present study was conducted at prescribed vibration ampli-
tudes for the fans and not at a specified power input to drive the
fans. For an array of N fans operating at the optimal pitch, the
required power is less than N times the power required for one
fan. Therefore, an experiment performed with the input power
fixed would yield even further increases in thermal performance
than that reported in this work. The optimal value of dimension-
less pitch holds true regardless of gap or vibration amplitude and
provides a guideline for use in the design of such fan arrays.
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Nomenclature
A = vibration amplitude (1/2 of peak-to-peak
amplitude)
Apeat = area of heat source
Dy, = hydraulic diameter of vibration envelope
G = gap
local convection coefficient
h = area-averaged convection coefficient
hg = stagnation forced convection coefficient
Is = current from power supply
k = thermal conductivity
L = piezoelectric fan length
Nu = local Nusselt number
Nu = area-averaged Nusselt number
Nuy = stagnation Nusselt number
P = fan pitch
q” = heat flux
Reynolds number for vibrating cantilever
Ts = surface temperature
T, = ambient temperature
Vs = voltage drop across heater
r = radial location on heat source
w = piezoelectric fan width
x = horizontal location on heat source
y = vertical location on heat source

Greek Symbols
e = surface emissivity

111401-8 / Vol. 131, NOVEMBER 2009

= kinematic viscosity

= polar angle from horizontal on heat source
Stefan—-Boltzmann constant

= vibration frequency

€ Q v
I

Subscripts
gen = energy generation

mixed = mixed regime convection
nc = natural convection
pz = forced convection (under piezoelectric
actuation)
rad = radiation
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Single-Phase Microscale Jet
Stagnation Point Heat Transfer

An investigation of the pressure drop and impingement zone heat transfer coefficient
trends of a single-phase microscale impinging jet was undertaken. Microelectromechani-
cal system (MEMS) processes were used to fabricate a device with a 67-um orifice. The
water jet impinged on an 80-um square heater on a normal surface 200 um from the
orifice. Because of the extremely small heater area, the conjugate convection-conduction
heat transfer process provided an unexpected path for heat losses. A numerical simula-
tion was used to estimate the heat losses, which were quite large. Pressure loss coeffi-
cients were much higher in the range Rey, <500 than those predicted by available
models for short orifice tubes; this behavior was likely due to the presence of the wall
onto which the jet impinged. At higher Reynolds numbers, much better agreement was
observed. Area-averaged heat transfer coefficients up to 80,000 W/m? K were attained
in the range 70 <Rey <1900. This corresponds to a 400 W/cm? heat flux at a 50°C
temperature difference. However, this impingement zone heat transfer coefficient is nearly
an order-of-magnitude less than that predicted by correlations developed from macros-
cale jet data, and the dependence on the Reynolds number is much weaker than expected.
Further investigation of microjet heat transfer is needed to explain the deviation from
expected behavior. [DOI: 10.1115/1.3154750]

Keywords: electronics cooling, microscale jet heat transfer, microjet, orifice pressure

loss coefficient

1 Introduction

Due to the increasing power consumption and decreasing size
of electronic chips, cooling of these devices is becoming increas-
ingly difficult. Heat fluxes seen in processors and power electron-
ics are quickly approaching levels that cannot be easily accommo-
dated by forced air convection over finned heat sinks. Therefore,
more effective heat transfer cooling methods will be necessary to
meet heat rejection needs within the next few years. One approach
being investigated is liquid cooling, which takes advantage of a
liquid’s high (compared with air) conductivity, Prandtl number,
density, and specific heat; because of these advantages, there have
been many recent investigations of the use of liquid microchannel
flows for electronics cooling.

Another possible liquid cooling method is microscale jet im-
pingement cooling. Jet impingement cooling offers high heat
transfer coefficients and has been wused effectively in
conventional-scale applications such as turbine blade cooling and
the quenching of metals. Many studies investigating the perfor-
mance of circular macroscale jets are available in the literature.
Reviews of the single-phase heat and mass transfer performance
of circular macroscale jets were given by Martin [1] and Jambu-
nathan et al. [2].

Less information is available concerning the heat transfer per-
formance of microscale jets. There have been several investiga-
tions of the performance of arrays of microscale jets [3—-8] but
very few published studies describing the heat transfer perfor-
mance of a single circular microscale impinging jet.

Wu et al. [9] performed experiments investigating the heat
transfer characteristics of a single confined submerged
compressed-air jet with diameters between 500 wm and
1500 um. They reported a heat transfer coefficient of
320 W/m? K for a 500-um diameter jet with a standoff (the dis-
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tance from orifice exit to heated surface) of 750 um and a pres-
sure drop of 5 psi. Reynolds numbers were not reported. The heat
transfer coefficient was very small because the entire 2 cm
X2 cm chip was taken to be the heat transfer area, and the
500-um diameter jet had little influence over most of this area.

Patil and Narayanan [10] performed an experimental study of a
confined submerged 125-um circular air jet. Spatially resolved
heat transfer data were obtained using an infrared radiometer to
measure the temperature of the heated thin foil onto which the jet
impinged. Reynolds numbers in these experiments were in the
range 700 <Rey<1800. Standoff-to-diameter ratios of 2, 4, and 6
were tested, and the heat transfer coefficients were determined to
be insensitive to this ratio in that range. The stagnation point
Nusselt number varied from about Nug=15 at Req=700 to Nuy
=55 at Rey=1800. The area-averaged Nusselt number results were
compared with those predicted by the correlation given by Martin
[1]. The observed area-averaged Nusselt numbers were approxi-
mately 40% lower than predicted at Reynolds numbers (based on
orifice diameter) less than 1000, and approximately 25% higher
than predicted at Reynolds numbers greater than 1700.

The pressure drop across the microjet orifice is also of interest
to obtain a better understanding of the overall system and when
considering pumping requirements. The microjet papers discussed
above do not contain detailed information about the pressure
drops across the orifices; however, there are several recent inves-
tigations of the pressure drop of flow through short microtubes or
orifice tubes [11-13], the conclusions of which may be applicable
to microjet orifice flows. Jankowski et al. [13] developed a model
to predict the pressure drop for incompressible flows through ori-
fices, including micro-orifices, with length-to-diameter ratios in
the range 0<L/d<15 and Reynolds numbers in the range 0
<Rey ,<3000.

In this work, we examine the performance of a single-phase
67-um diameter confined submerged impinging jet of water. The
pressure drops and heat transfer coefficients are studied using a
device fabricated using standard microelectromechanical system
(MEMS) procedures. The pressure loss coefficients across the ori-
fice are investigated. Using a heated section that measures only
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Fig. 1

80 um X80 um, area-averaged Nusselt numbers are determined.
These area-averaged Nusselt numbers correspond to the so-called
impingement zone, a region very close to the jet stagnation point.

2 Experimental Apparatus and Method

2.1 Apparatus. The experimental apparatus consisted of an
open flow loop delivering water to and from a microdevice. A
fixture was designed and built to incorporate the microdevice,
fabricated using MEMS fabrication processes in a clean room
environment, into the flow loop as well as to provide electrical
contact. The working fluid was degassed de-ionized water.

The flow loop (Fig. 1) contains two tanks: one that supplies
fluid to the device and one that collects fluid from the device exit.
The flow traveled from the supply tank through a filter and needle
valve before entering the fixture and microdevice. After exiting
the microdevice, the flow traveled through another needle valve to
one of three rotameters used to measure the flow rate before being
discarded in the receiving tank. Three rotameters with different
flow ranges were used to allow for a wide range of flow condi-
tions; valves were used to direct all of the flow through each
rotameter as needed. Type-T thermocouples were located before
and after the fixture. Absolute pressure transducers were con-
nected to the fluid entrance of the fixture and the chamber pres-
sure port in the device.

A fixture (Fig. 2) was designed to integrate the device into the
experimental apparatus. The fixture was fabricated with a com-
puter numerical control (CNC) mill to ensure an accurate fit with
the microdevice. A pocket was cut into the top surface of a Delrin

Cover Plate

i,

Fluid Exit

Fluid Entrance

Fig. 2 Schematic of the assembly of the fixture, the microde-
vice and the cover plate
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Schematic of the flow loop used in the experiments

block to hold the microdevice. Fluid channels were drilled into the
Delrin fixture in the locations of the orifice, the pressure tap, and
the device fluid exits. These locations were sealed with rubber
o-rings seated in recesses in the fixture. Two spring-loaded pins
were press fit into the fixture from below and were extended
above the mating surface to the contact pads on the device. These
pins were connected to an Instek PSP-405 power supply. Two HP
3457A multimeters were connected to measure the current and
voltage supplied to the heater. A thin aluminum plate was bolted
to the top of the fixture to hold the device in place and to ensure
proper sealing of the fluid ports and good electrical contact be-
tween the pins and the contact pads.

The microdevice was fabricated by anodically bonding and dic-
ing two processed wafers. The two wafers were a silicon wafer
etched using a deep reactive ion etcher (DRIE) to form the geom-
etry of the channel and a Pyrex wafer with a thin-film metallic
heater deposited on it. The fabrication of both wafers used photo-
lithography carried out on a tool capable of back-side alignment.

The silicon wafer was first etched with a photoresist mask to a
depth of 5 um to create clearance for the heater vias and align-
ment marks. Next, 2 wm of oxide were deposited on both sides of
the wafer in two separate steps providing oxide for hardmasks.
DRIE was then performed on the top side using an oxide mask
creating the channel 200 um in depth. The orifice, fluid exit
holes, and pass-through holes for the electrical contact pins were
then etched from the bottom until they met the channel above.

The heater on the 1-mm thick Pyrex wafer was fabricated by
depositing and patterning of metal layers and an oxide layer. First,
100 nm of titanium and 1 xm of aluminum were deposited with-
out breaking vacuum. The 1-um thick aluminum film was used to
create vias and contact pads, while the underlying titanium existed
in both those areas and the heater area. To electrically isolate and
physically protect the heater, 1 wm of silicon oxide was depos-
ited. The patterned silicon oxide film covers the heater and the
vias but not the contact pads. In this way, the heater and the vias
were electrically isolated from the water in the chamber, but elec-
trical contact could be made with the spring-loaded contact pins
outside of the chamber. Finally, the Pyrex and silicon wafers were
anodically bonded together to form the completed microdevice.

The microdevice (Figs. 3 and 4) housed a channel 1.0 mm
wide, 200 um high, and 8.0 mm long into which the microjet
flowed and impinged upon the heater from below. The microjet
orifice was 67 um in diameter, 250 wm long, and was positioned
in the center of the bottom surface of the channel (silicon). The
heater on the top surface of the channel (Pyrex) was square, mea-
suring 80 wum on a side, and the center of the heater was aligned
to the centerline of the microjet. This jet orientation (impingement
on the heater from below) is different from most previous mac-
roscale jet experiments, where the jet impinged on the heated
surface from above. However, since the experiments presented
here involved submerged jets, where the entire channel is flooded,
in a channel only 200 wm tall and 1 mm wide, orientation is not
expected to have a significant effect on performance.
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Fig. 3 (a) Schematic of the microdevice and (b) a close up view of the
orifice and the heater. The jet issues from the orifice in the center of the
bottom surface of the channel. It impinges upon the heater 200 um above
(on the bottom surface of the Pyrex wafer), and the fluid exits down from

either end of the channel.

Fluid exited the channel at both ends through 1.0 mm holes in
the bottom of the channel. During the experiments, the entire
channel was flooded, creating a submerged jet. A pressure tap was
located on a side wall in the middle of the channel to allow for
measurement of chamber pressure. To enhance the structural in-
tegrity of the channel and to minimize deflection, several support-
ing pillars were fabricated in the channel starting more than 1 mm
away from the orifice, such that their effect on the microjet was
negligible.

2.2 Experimental Procedure. In addition to supplying heat
to the system, the titanium heater also served as a thermistor.
Before experiments were performed, the heater was placed in an
oven, and its resistance was measured at 5°C intervals in the
range 25-110°C. The temperature during this procedure was
measured by a 36-gauge type-T thermocouple inserted into one of
the fluid exit holes, positioning the thermocouple as close to the
heater as possible. This thermocouple had previously been cali-
brated in a thermostatic bath with a precision resistance tempera-
ture detector (RTD) over the entire temperature range to an accu-
racy of +0.2°C. A third-order polynomial curve was fit to these
data to provide a relationship between resistance and average
heater temperature. The measured data and curve fit are shown in
Fig. 5.

The device was then placed into the fixture. The chamber in the
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Fig. 4 Schematic showing the paths from the heater through
which heat is lost. Most of the heat is lost through the path
labeled Qoss2, Which cannot be measured independently or
calculated without knowledge of local heat transfer
coefficients.
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Fig. 5 Relationship between the resistance of the heater and

average heater surface temperature. The error bars are smaller
than symbol size.

device was evacuated, and power was supplied to the heater. The
supplied voltage and current were measured, and an estimate of
the heat lost through the fixture was obtained over the expected
range of operating temperatures.

The supply tank was kept at a very low pressure with a vacuum
pump for several days to ensure very low dissolved gas content in
the de-ionized water used in the experiments. When water that had
not been degassed as described above was used in earlier experi-
ments, some gas bubbles could be seen on the downstream side of
the orifice when large pressure drops were used. Immediately be-
fore the experiments were performed, the supply tank was pres-
surized with helium. Experiments were run at jet Reynolds num-
bers in the range 70<Rey<<1900 by controlling the flow rate
through the system with the upstream needle valve and the pres-
sure in the supply tank. At jet Reynolds numbers less than Rey
=70, the uncertainty in flow rate became very large. At Rey
=1900, the upstream pressure was 700 kPa absolute and higher jet
Reynolds numbers were not attempted to prevent breakage of the
device. Once a steady flow rate had been attained, a fixed voltage
(~3 V) from the power supply was provided to the heater. Volt-
age and current were measured, and inlet pressure, inlet tempera-
ture, and chamber pressure were measured and recorded by a
National Instruments data acquisition system.

2.3 Data Reduction. The jet Reynolds numbers were calcu-
lated according to

p-V-d
)7
In this equation, p is the density, V is the average velocity at the
orifice exit, d is the orifice diameter, and w is the dynamic viscos-
ity. The thermophysical properties of water were evaluated at the
film temperature, which was calculated using
T+ T,
Thim = — > - 2)

Red =

()

The orifice Reynolds numbers (Reg,) were also calculated using
Eq. (1). However, for the orifice Reynolds numbers, the thermo-
physical properties of water were evaluated at the orifice inlet
temperature, which was approximately 22°C for all of the experi-
ments. Two different Reynolds numbers are necessary because the
fluid properties at the orifice are relevant for the pressure drop
behavior, and the fluid properties at the film temperature are used
for the heat transfer behavior, consistent with previous work.
From the inlet and chamber pressures measured in the experi-
ments, the pressure drop across the orifice was calculated. The
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relationship between pressure drop and flow rate through orifices
can be presented in two ways: using the pressure loss coefficient
K or the discharge coefficient C4. The relationship between these
parameters, flow velocity and pressure drop, is given by

_(-pY_ ap

K
Ci 3oV

©)

where AP is the pressure drop across the orifice, and g is the ratio
of the orifice diameter to the upstream tube diameter, which is
effectively zero in the experiments presented here. The results
presented in Sec. 3.1 are in terms of the pressure loss coefficient
K, which, as can be seen in Eq. (3), is directly proportional to the
pressure drop across the orifice.

The voltage and current supplied to the heater were used to
calculate both the power dissipated by the heater and its resis-
tance. The relationship between the electrical resistance of the
heater and its average temperature was well characterized by cali-
bration. The average surface temperature T4 was calculated from
the total power supplied to the heater Qpeater, the heat loss estimate
Quossy the heater area Apeser, the conductivity of silicon dioxide
kSioz, the thickness of the silicon dioxide layer on the heater tsio,,

and the average heater temperature Tpeqger USING

I(SiOZ ' Aheater(Theater - Ts)
Qheater = Qloss = 4)

tsio,

From the total power supplied to the heater Qpeater, the heat loss
estimate Qo5 the heater area Apqqr, the average heater surface
temperature Tg, and the inlet water temperature T;,, the area-

averaged heat transfer coefficients over the heater h were calcu-
lated using

Qheater = Qloss =N - Aheater(T_s = Tin) (5)

Note that to comply with current practices in jet impingement heat
transfer, we employed the commonly-used inlet temperature as the
pertinent reference temperature in calculating the heat transfer co-
efficient and Nusselt number. o

The area-averaged Nusselt numbers Nuy were calculated from
the area-averaged heat transfer coefficient, the orifice diameter d,
and the conductivity of water kHZO using

Nug= — (6)
“ ko

The conductivity of water used to calculate the Nusselt numbers
was evaluated at the film temperature.

2.4 Heat Loss Estimation. As described above, before per-
forming heat transfer experiments, the heat loss through the Pyrex
wafer and the fixture was measured by completely evacuating the
chamber and applying power to the heater. At steady state, the
heater current and voltage were measured, and the power supplied
to the heater and temperature of the heater were calculated. A
polynomial was fit to these data to relate the heat lost from the
back of the heater to its temperature. However, the path of heat
losses (the amount of heat supplied which was not removed by
convection over the surface of the heater) during the experiments
is much different than the path present with the chamber evacu-
ated. The heat loss measured in a vacuum neglects any heat lost
by convection to the water from the surface of the Pyrex and the
aluminum vias outside of the area covered by the heater. There-
fore, the heat losses measured in a vacuum represent a best-case
scenario.

To better understand heat losses during the experiment, a finite
element analysis was performed using a commercially available
software package, COMSOL MULTIPHYSICS. In this analysis, a 1-mm
cube section of the Pyrex wafer was modeled. The 80-um square
heater was centered on the bottom face of this cube, and the
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Fig. 6 Plot of the measured vacuum heat losses and the heat
losses calculated using finite element analysis for several val-
ues of heat transfer coefficient. The error bars for the measured
values are smaller than the symbol size.

aluminum vias and oxide layers were included in the model. A
constant temperature boundary condition was applied to the
heater, and a convection boundary condition was applied to the
remainder of the surface exposed to the water, including the alu-
minum vias and exposed Pyrex sections. The inlet temperature of
the water (which was the ambient temperature in these experi-
ments, approximately 22°C) and a constant heat transfer coeffi-
cient were used in the simulation. To the remaining boundaries a
constant temperature boundary condition at the ambient tempera-
ture was applied.

As shown in Fig. 6, the finite element analysis gave much
higher estimated heat losses than were measured in the vacuum—
more than double if the heat transfer coefficient is greater than
25,000 W/m? K. Moreover, the analysis showed that nearly all of
the losses were not by conduction to the outside boundaries of the
Pyrex (Qjoss,1 In Fig. 4), but rather by conduction from the back of
the heater through the Pyrex to the surface of the Pyrex and alu-
minum vias, and then by convection to the water (Qjos2 In Fig.
4). Even though Pyrex is a very good insulator (k=1.1 W/m K),
the heat flow needed to travel only miniscule distances
(~10 wm) through the Pyrex to reach the surface just outside of
the heater area, where the heat transfer coefficient is very large.
Because of this low thermal resistance heat loss path, the calcu-
lated losses were on the order of the heat transfer from the heater
directly to the fluid.

With the chosen boundary conditions, a worst-case estimate of
the heat losses was obtained. In the actual experiments, the non-
convective boundaries of this volume were at some temperature
above the ambient, reducing those conduction losses. The assump-
tion of constant heat transfer coefficient on the surface of the
Pyrex and vias also serves to give the worst-case estimate, since
the literature on macroscale jets, as well as research of Wu et al.
[9] and Patil and Narayanan [10] on microjets, suggest the heat
transfer coefficient is greatest near the stagnation point and de-
creases with distance from the stagnation point. Therefore, the
worst-case estimate overstates the losses, possibly significantly.
The measured vacuum heat losses (best case) and the heat losses
calculated using finite element analysis (worst case) are shown in
Fig. 6.

The area-averaged Nusselt number results presented in the Sec.
3.2 are calculated using the assumption that the actual losses dur-
ing the experiments, Qo5 IN EQ. (5), are the arithmetic mean of
the best and worst case losses described above. Since the worst
case losses depend on the heat transfer coefficient, the solution is
calculated iteratively. The uncertainty in the heat loss measure-
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ment is then taken to be one-half of the difference between the
best case and worst case. This results in a quite large uncertainty
in the area-averaged Nusselt number, but, as will be discussed
below, the overall conclusion of the paper is not affected by this
large value.

2.5 Uncertainties. The propagation of uncertainties for the
reduced data followed standard methods [14]. The uncertainty in
the Reynolds number (both jet and orifice) was less than =5% for
all experiments. The uncertainty in the area-averaged Nusselt
number was approximately +85% for the lowest Reynolds num-
bers and decreased to +65% for the highest Reynolds numbers.
This very large uncertainty is due almost entirely to the uncer-
tainty in the heat losses described above. The large uncertainties
reported in this investigation are inherent to the length scale of the
heater. The heater was deposited on an excellent insulator with an
extremely low thermal conductivity. However, due to the conju-
gate convection-conduction nature of the heat losses and the very
small length scales involved, the heat losses are not experimen-
tally measurable. A numerical simulation was undertaken to better
understand these losses, but due to our very conservative approach
(taking the uncertainty in heat losses to span the entire range from
the best-to worst-case situations), the experimental uncertainty re-
mained large. The uncertainty in the pressure loss coefficient was
less than =35% for all points except the smallest Reynolds num-
ber and less than +5% for Regy ,>400.

3 Results and Discussion

3.1 Pressure Drop. The pressure loss coefficients determined
from these experiments are shown in Fig. 7. For comparison pur-
poses the correlation given by Jankowski et al. [13] is also shown.
Error bars are included in the figure for all data points; however,
the error bars are smaller than the symbol size for Rey,>500.
While the trend is the same, the experimentally determined pres-
sure loss coefficients were larger than predicted by the model at
low orifice Reynolds numbers. However, for Rey ,> 500, the pres-
sure loss coefficients were slightly less than predicted by the
model.

The model of Jankowski et al. [13] assumes that the overall
pressure drop in an orifice tube is the sum of the pressure drop due
to friction in developing flow in a straight length of tube and the
pressure drop due to flow through a sharp-edged (zero length)
orifice, as shown by

1 1
AP=K-5p-V2=(Kf+KS)-Ep-V2 (7
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Fig. 8 The heat transfer performance of the microjet

The contribution due to flow friction was calculated using a
correlation given by Shah [15], which is expressed as

(ofbo AP 4L %+16+3.125/§—3.44/\E>
T 1+0.000212/&2

d ip.v2 Red‘od( Ve
(8)
where f is the Darcy friction factor and £=L/(d Rey ). Jankowski

et al. [13] developed a correlation for the contribution due to flow
through a sharp-edged orifice, expressed as

1 [ — [ —
T =Cys= 0.6[ 1+exp(-0.12VReqy ) — 2.16 exp(- 0.26 VRey )
VKs

Re
+o.1e<1—\—L>] 9)
1+ \““Redyo

In the case of microjet flow, the presence of the impingement
surface will also have an effect on the overall pressure drop. This
effect is not represented in the model of Jankowski et al. [13]. The
pressure loss coefficient from the experiment is larger than that
predicted by the model at low orifice Reynolds numbers, suggest-
ing that the pressure drop is increased due to the presence of the
wall. At orifice Reynolds numbers in the range Reg ,>500, how-
ever, the pressure loss coefficient is approximately 15% lower
than the pressure drop for a sharp-edged orifice. The pressure drop
for the impinging jet flow in this range is quite close to that
predicted by the correlations for orifice flow. The presence of the
wall onto which the jet impinges is likely to cause large recircu-
lation zones and entrainment that are not present in typical orifice
flows at low orifice Reynolds numbers. At higher orifice Reynolds
numbers, both orifice and impinging jet flows are expected to
cause recirculation zones and entrainment. This may explain why
the pressure drop is not well predicted by the model at low orifice
Reynolds numbers but agrees well for Reg ,>500.

3.2 Heat Transfer. The observed Nusselt numbers are plotted
in Fig. 8. For comparison purposes the correlations given by
Womac et al. [16] and Garimella and Rice [17] have also been
included in the figure. The experimental heat transfer coefficients
ranged from 30,000 W/m? K to 80,000 W/m? K. Both correla-
tion curves shown in Fig. 8 are extrapolations, since they were
developed from macroscale jet data. The 67-um diameter is well
outside of the geometrical range of these correlations. The Rey-
nolds numbers investigated here are also below the range of data
from which the correlations were developed. However, since no
correlations for microscale jets exist in the literature, these corre-
lations are the best available. The area-averaged Nusselt number
correlation given by Womac et al. [16] for a jet is given by
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Nug d

554 =0.785 ReJ°A, +0.0257 Reg'gg(l -A)
where A, is the ratio of the “impingement zone” area to the heater
area given by the equation

(10)

(1.9d)?
=T 1
and y is the average length of the wall-jet region. The authors state
that A, should be set to 1 when A, as determined by Eq. (11) is
greater than 1, as is the case with the geometry under investiga-
tion. Interestingly, Womac et al. divided the entire heat transfer
area into two separate regions: the impingement zone, which is
influenced directly by jet impingement and is taken to extend to a
radius of 1.9d, and the wall-jet region outside of the impingement
zone. The impingement zone Nusselt number was taken to have a
weaker dependence on the Reynolds number than did the wall-jet
region. This correlation fit all of the data for which it was deter-
mined within =16%.

The correlation given by Garimella and Rice [17] is for the
stagnation point Nusselt number, rather than an area-averaged
Nusselt number, since the correlation given for area-averaged
Nusselt numbers is specifically for a 10 mm <10 mm area. Since
the heater size is small in these experiments, the stagnation Nus-
selt number correlation is appropriate and is given by

S 0.024 L -0.09
Nug = 0.492 ReJ°® Pr°-4<—) (—) (12)

d d
The authors state that this correlation fit most of the data within
+10%.

An extrapolation of the widely-used correlation given by Mar-
tin [1] could not be applied for this geometry. The Martin corre-
lation is valid for area ratios (the ratio of orifice area to heater
area) between 0.004 and 0.04. Because the area ratio investigated
in these experiments is very large (0.55), the correlation gives a
nonphysical negative value for Nusselt number.

Both correlations shown in Fig. 8 overpredict the area-averaged
Nusselt number by 200-800%. The overprediction is not a result
of the large uncertainties associated with the experiments. That is,
even if the losses (which account for nearly all of the uncertainty)
were assumed to be zero and all of the power provided to the
heater was used to calculate the heat transfer coefficients, the
correlations would still overpredict the area-averaged Nusselt
numbers by up to 500%.

There could be several reasons for this disagreement. In the
investigations of the performance of macroscale single jets, a long
tube is usually used to provide the jet fluid. Because of the length
of these tubes, the jet flow typically has the velocity profile of
fully-developed flow in a tube. The L/d ratio of the orifice in this
investigation is less than 4, and the flow in the orifice is not
expected to be fully developed. The hydrodynamic entrance con-
ditions of the jet are therefore different for this investigation than
for the jet flows that have provided the data for the development
of the correlations. The discrepancy reported here is, however,
likely much larger than would be caused by differing entrance
conditions.

The discrepancy in the size of the heater area relative to the
area of the jet may explain some of the difference between the
measured area-averaged Nusselt numbers and those predicted by
the correlations. The jet in these experiments covered more than
half of the heater area. In the two microjet investigations previ-
ously undertaken [9,10], the heat transfer coefficient was maxi-
mum at the stagnation point. However, several experimental stud-
ies of local jet impingement heat transfer at the macroscale have
shown the existence of a local minimum of the heat transfer co-
efficient at the stagnation point [18-20]. In cases where this local
minimum was observed, the heat transfer coefficient increased to
a maximum at distances as large as 1.5 diameters away from the
stagnation point (outside of the heater area in this experiment).
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Since the area over which the area-averaged Nusselt numbers
were measured in this experiment is small relative to the size of
the jet, it is possible that the entire area was within the previously-
observed zone of locally reduced heat transfer. Even if this were
the case, however, this would account for only a small portion of
the discrepancy between the measured area-averaged Nusselt
numbers and the values predicted by the correlations.

Another possible cause for the disagreement between the ex-
perimental results and the correlations are some fundamental dif-
ferences between jet flow at the microscale and at the macroscale.
Since only orifice pressure drop and impingement zone heat trans-
fer data have been collected in this experiment, this conclusion
cannot be made on the basis of this work. Future work in which
the fluid mechanics of the microscale jet flow is investigated
should be undertaken.

The jet Reynolds numbers investigated here are smaller than
those used to develop the correlations. Even though the velocities
are large, the small diameter of the orifice in the microdevice
leads to jet Reynolds numbers much lower than are typically seen
in the macroscale jet flows that have been thoroughly studied. The
correlations shown in Fig. 8 were therefore developed using data
from almost exclusively turbulent jets, while the jets present in the
microdevice under investigation were in the laminar regime.
Therefore, the discrepancy may have been caused by flow regime
differences between the experiment and the data used to develop
the correlations. This is perhaps the most likely reason for the
disagreement.

A curve fit to the experimentally obtained area-averaged Nus-
selt number is included in Fig. 8. The equation of this fit is given
by

Nug = 0.635 ReJ*° pro4 (13)

Only water was used in this experiment, so the Prandtl number
exponent was set to 0.4, which is most often used in the jet litera-
ture [16,17]. This curve fit is valid only for the geometry studied
here. Interestingly, this equation shows a much weaker depen-
dence of the Nusselt number on the jet Reynolds number than is
expected from earlier work. However, since the heater area is very
close in size to the area of the orifice in this case, the area over
which the Nusselt number is averaged is very close to the stagna-
tion point. Some investigators, such as Womac et al. [16], Ga-
rimella and Rice [17], and Zhou and Ma [21] reported a weaker
dependence on the jet Reynolds number for the stagnation point
heat transfer coefficient than for the impingement surface far
away from the stagnation point. The exponent reported here
(0.245) is significantly lower than even those reported values (0.5,
0.585, and 0.5, respectively). Further research is required to de-
termine the cause of this behavior.

4 Conclusions

An experimental investigation of the pressure drop and stagna-
tion zone heat transfer coefficient of a single impinging microjet
was undertaken. The pressure loss coefficients and area-averaged
Nusselt numbers were reported over the range 50 <Rey , <1400
and 70<Rey<<1900, respectively. The pressure loss coefficients
obtained experimentally were much higher than predicted by the
model of Jankowski et al. [13] at orifice Reynolds numbers less
than 500 due to the presence of the impingement wall. At orifice
Reynolds numbers higher than 500, the experimentally obtained
pressure loss coefficients were well predicted by the model.

Even with the large experimental uncertainties taken into ac-
count, the observed area-averaged Nusselt numbers were signifi-
cantly less than that predicted by Womac et al. [16] or Garimella
and Rice [17]. The dependence of the area-averaged Nusselt num-
ber on the Reynolds number (Nug>Re$?*) is also much weaker
than has been previously observed. Additional experimentation
should be undertaken to better understand whether the discrepan-
cies noted above are due to the laminar flow regime investigated
in these experiments or if the flow through microscale jets is fun-
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damentally different from that through macroscale jets. In addi-
tion, we have initiated a numerical simulation project to explore
these two issues, as well as the conjugate effects inherent with
these very small length scales.
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Nomenclature

English

Apeater = surface area of the heater (m?)

A, = ratio of impingement zone area to heater area
Cq = discharge coefficient of orifice
d = diameter of orifice (m)
f = Darcy friction factor
h = area-averaged convective heat transfer coeffi-
cient (W/m? K)
K = pressure loss coefficient

kn,o = thermal conductivity of water (W/m K)

ksio, = thermal conductivity of silicon dioxide
(W/m K)

L = length of orifice (m)

I = side length of heater (m)
Nug = Nusselt number
Nuy = area-averaged Nusselt number
AP = pressure drop (Pa)

Qneater = total power supplied to the heater (W)

Qioss = heat loss from heater other than convection
directly to fluid (W)
Qioss,1 = heat loss by conduction through the Pyrex to
the ambient (W)
Qioss,2 = heat loss by convection from the surface in
contact with the water (W)
Rheater = resistance of the heater (€2)

Req = jet Reynolds number
Rey, = orifice Reynolds number
Re, = wall-jet Reynolds number
S = standoff (distance from orifice exit to heater
surface) (m)
Tin = fluid inlet temperature (°C)
_Thiim = film temperature (°C)
Theaer = average heater temperature (°C)
Ts = average surface temperature (°C)
tsio, = thickness of silicon dioxide on heater (m)

y = average length of the wall-jet region (m)
Greek
B = ratio of orifice diameter to upstream tube
diameter
m = viscosity of water (kg/m s)
& = correlation parameter
p = density of water (kg/m?®)
Subscripts
f = corresponding to developing flow in a tube
s = corresponding to flow through a sharp-edged
orifice
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On the Similarity Solution for
Condensation Heat Transfer

Analytical solutions for laminar film condensation on a vertical plate are integral to

Bret P. Van Poppel

many heat transfer applications, and have therefore been presented in numerous refereed

articles and in most heat transfer textbooks. Commonly made assumptions achieve the

Michael J. Benson
A. Ozer Arnas

well known similarity solution for the Nusselt number, heat transfer coefficient, and film
thickness. Yet in all of these studies, several critical assumptions are made without jus-
tifying their use. Consequently, for a given problem one cannot determine whether these

restrictive assumptions are actually satisfied, and thus, how these conditions can be
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checked for validity of the results. This study provides a detailed solution that clarifies
these points. [DOI: 10.1115/1.3154920]

Keywords: film condensation, similarity solution, vertical plate

1 Introduction

The engineering significance of condensation heat transfer
stems from Watt’s steam engine, and remains critical to power and
refrigeration applications. Nusselt provided the first rigorous ana-
Iytical studies on condensation a century ago [1,2], and most heat
transfer textbooks in recent decades discuss the condensation phe-
nomena [3-29]. All of these textbooks, along with several hand-
books [30-32] and refereed articles, make assumptions to obtain
the Nusselt number, heat transfer coefficient, and boundary layer
thickness for film condensation problems. However, none of the
works in print present a complete and detailed similarity solution
to show how the problem is solved analytically because the re-
strictive assumptions are not appropriately justified. This article
demonstrates in a rigorous, analytical fashion the similarity-based
solution, the physical meaning of the assumptions, and the condi-
tions that the student and others must verify, prior to using the
results.

2 Governing Equations

Conservation of mass, momentum, and energy must be consid-
ered in order to describe the convection in the boundary layer. The
full forms of the conservation laws can be reduced for flow that is
steady, two-dimensional, with constant and uniform properties,
and without thermal generation. Additionally, applying an order of
magnitude analysis, the conservation of mass, Xx-momentum,
y-momentum, and energy become Egs. (1)—(4), respectively. The
x-direction is in the vertical, and the y-direction is normal to the
plate surface.

Ju  Jdv
—_ 4 —=

1
X dy &
9 J 19 P
u—u+v—u: ———p+V—l; (2)
X ay pax  dy
ap
—=0 3
2y (3)
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T  dT udp FT w(ou)?
U—+v—=——_—+a 5+_—|— (4)
X dy pChdx Iy Cp\dy
As a consequence of order of magnitude analysis, a restriction that
Re, =100 at the end of the plate is found. Additionally, the Eckert
number is shown to have an order of magnitude of one and the
Péclet number Pé=100

UZ
Ec= - ~®
Cp(Ty = To)
For cases where there is negligible freestream velocity, the Eckert
number has an order of magnitude of much less than one Ec
<0(1), and the pressure and viscous terms drop out from conser-

vation of energy, reducing Eq. (4) to Eq. (6) for energy conserva-
tion.

=0(1) (%)

aT  aT  &#T
U—+v—=a_— (6)
ax oy ay

3 Assumptions to Simplify Governing Equations

For the condensation problem, Hsu [16], Lienhard [22], and
others provide the following general assumptions:

(1) The temperature of the vapor T, is constant and equal to the
saturation temperature.

(2) The condensate film is laminar.

(3) Since the kinematic viscosity of the vapor is much less than
that of the liquid, there is no frictional resistance on the
liquid at the interface with the vapor.

(4) The inertia terms for the liquid are negligible, or

au Ju
u—+v—=0 (7)
ax oy
(5) The convection term in the liquid film is also negligible, or
JaT T
u—+v—=0 (8)
ax o ay

The key element in this article, which is neglected in similar deri-
vations found in the literature, is to present the validity of assump-
tions 2, 4, and 5. Additionally, this article presents the complete
and rigorous similarity solution so that one has a way of satisfying
the assumptions, prior to using the results obtained for the film
thickness, the Nusselt number, and the convective heat transfer
coefficient.

Since there are vapor and liquid phases present at equilibrium,
there must be two equations characterizing the physical problem:
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one for the liquid film and one for the vapor. However, assump-
tion 1, stating that the vapor temperature is a constant, eliminates
the energy equation for the vapor. Assumption 3 eliminates the
inertia and frictional terms of the momentum balance in Eq. (2)
for the vapor giving

1dp
- :0
p, dx ‘
or
1d ,
_29P_ 9)
pdx  p

Substituting Eq. (9) into the momentum equation for the liquid,
Eqg. (2) results in

au du ﬂ2u+ (p—pv> 10)

p

Rose [33,34] gave rather a detailed study of condensation heat
transfer as is done here. However, the validity of the assumptions
is not shown explicitly for the student, instructor, and the re-
searcher. Fujii [35], in his textbook, went through a number of the
steps presented here. These will be referred to as they become
significant. White [29] actually gave the combination of Egs. (7)
and (10), and of Egs. (6) and (8); however, he does not show the
consequences of the limitations of negligible inertia (assumption
4) and convection (assumption 5). The material discussed by
White [29] is available in a series of articles by Rohsenow [36], in
which he neglects the momentum changes at the start, and never
shows how one can calculate the validity of the assumption. Spar-
row and Gregg [37] neglected then retained the inertia terms for
the liquid, but did not show how one might check the conditions
under which either case is valid. Chen [38] included “the effect of
the drag to an initially stationary body of vapor.” He obtained the
solution using the integral method and a perturbation procedure
for numerical results. He did not include methods to check the
validity of assumptions made.

4 Simplified Governing Equations

Since at equilibrium, the densities of liquid (p) and vapor (p,)
are constants, the buoyancy body force is independent of the tem-
perature. In most cases, the density of the liquid is much larger
than that of the vapor. Thus, conservation of mass for the liquid is

Ju  Jdv
—+—= (11)
X ay
Conservation of momentum for the liquid reduces to
du  du  Ju
U—+v_—=v_5+¢ (12)
ax ay ay
Conservation of energy for the liquid is
aT 9T T
U—+v—=a— (13)
ax o ay dy
As shown in Fig. 1, the boundary conditions are
at y=0, u=v=0, and T=T, (14)
Ju
at y=6 —=0, and T=T, (15)
ay
at x=0 and 6=0 (16)

since at the top of the plate (x=0), T, u, and v have no physical
meaning. Now there are three equations (Egs. (11)—(13)) with four
unknowns (T, u, v, and 8). Thus, a fourth equation is required for
a mathematically solvable system of four equations and four un-
knowns.

111501-2 / Vol. 131, NOVEMBER 2009

— x=0— y
l Vapor
s T, = constant
< O(X) >
X=X —
I;
Energy liberated
Energy by condensation
conducted

Fig. 1 Schematic of condensation film on a vertical plate

The fourth equation is obtained by introducing the latent heat of
condensation i, and performing an overall energy balance on the
liquid film flowing down the plate, as shown in Fig. 1. In the
region from x=0 to x=X, and at y= 4, the mass flow rate per plate

width is
- 1(?°
m=pb‘u=p5l—f udy]
9 0

The total energy liberated at y= & is miyg, and is conducted into the
liquid toward the wall. Thus, using Eq. (17) and Fourier’s law

o[
pirg [ udy = —
0 0 &y

Equation (18) becomes the fourth equation since it is also in terms
of T, u, v, and 8. Thus the problem of condensation is character-
ized by Egs. (11)—(16) and (18).

an

d¢ (18)
y=6

5 Similarity Solution and Results
Using similarity transformations given as

g 1/4
7= (m) y (19)
W(xy) = (6497 *f() (20)
T-T,
T <21>

conservation of mass Eq. (11) is identically satisfied, applying the
normal definition of the stream function. Momentum in Eq. (12)
transforms to Eq. (22)

7+ 3" = 2(f')2+1=0 (22)
and energy Eq. (13) transforms to Eq. (23)
®"+3Prf®' =0 (23)
Boundary conditions in Egs. (14) and (15) become
at =0, f=f"=0, and ©=1 (24)
at n»=7ns; f"=0, and O=0 (25)

where
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Table 1 Physical descriptions of terms in untransformed and
transformed equations

Physical Untransformed Transformed
description equation term equation term
Viscous force y% f

- "_ n2
Inertia force uﬂ + v@ 8" -2(f)

ox ay
Body force g 1
Conduction (92_12- ©

Y
. ar a7 3Prfe’

Convection u—+v—

X ay

g 1/4
75 <4V2X> 3 (26)
Burmeister [9] goes through the similarity calculations and ob-
tains Egs. (22) and (23); however, the analysis is not carried out
any further.

The physical descriptions of the terms in the transformed and
untransformed equations are shown in Table 1. This physical
meaning is important since various terms will be dropped, based
on the assumptions made in the analysis that follows.

In order for similarity to hold, all equations and boundary con-
ditions should be independent of the variable x. Equation (18)
must be transformed using Eqgs. (19)—(21). The right hand side of
Eq. (19) (the term for conduction into the liquid layer) transforms

to
X oT 1/4
kfo 5 4—]}25) d¢

==k(T,- Ty,
y= 6 ( )f ‘977

1/4
=-k(T, - TW)(4V> J 0’ (7, & d¢

7=n

Assuming ©'(#,) is constant, a requirement if 7, is constant, and
integrating yields

X
aT
=
o W

Similarly transforming the left hand side of Eq. (18) (the term for
total energy liberated during condensation) and integrating yields

6 76 2.\ 1/4
. . 417X
Plfgf Udy=plfgf 2(9X)”2f’(77)<7> dy
0 0

= pigg(64g°%°) () (28)
since f(0)=0. Substituting Egs. (27) and (28) into Eq. (18) yields

gXS 1/4
d :—-k(T ~Two’ (7/5)< VZ) (27)
y=6

k(T,-T f
( v i W) =-3 Eﬂé‘) (29)
vpitg 0’ (75
Multiplying Eq. (29) by the Prandtl number Pr:CPT” yields
T,-T
Cpl v w _ _3pr f(75) (30)
ltg 0'(7,)

which is a similar result obtained by Sparrow and Gregg [37].
Since x no longer appears in Eq. (29) or Eq. (30), then 7y is either
a constant or 5~xY# for similarity to hold.

Thus, for condensation heat transfer, the governing sets of
equations are Egs. (22)-(30), with boundary conditions given by
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Egs. (24) and (25). The properties are those of the liquid since the
vapor is at constant temperature, T, is nonviscous, and has negli-
gible density compared with that of the liquid. Equation (30) is
obtained by Rohsenow and Choi [25] without going further with
any discussion.

To obtain the exact solution, choose a value for 7; for a given
Prandtl number, and solve the momentum and energy equations
simultaneously. Substitute the result into the energy balance equa-
tion. Repeat the process until the value converges to the value
chosen for ;.

However, a meaningful approximate solution can be obtained
using a power series that satisfy the boundary conditions at »=0
for both the velocity distribution

2

C{
f—sz—-n o

30 (31)

and for the temperature distribution

c
0= L2844 (32)

where C; and C, are constants. For »=1, as an approximation

f=Cyrf- o (3)
0=1+Cyy (34)
These distributions, Egs. (33) and (34), also satisfy
f7+1=0 (35)
for negligible inertia, and
0"=0 (36)

for negligible convection in the film, such that all energy transfer
is by conduction from the outside film to the plate surface. Equa-
tions (35) and (36) are obtained by Fujii [35].

For these solutions to be valid, the condition <1 must be
satisfied. For the condition of negligible inertia

Ci oot @37)
30775 6715
or
5
< — 38
s Ci ( )

must be satisfied. For the condition of negligible convection

Cc,C
Pr="75<Ca7s (39)

or

4

3 < 40

s C,Pr (40)
must be satisfied. The three conditions, Egs. (38) and (40), and
laminar flow, form the restrictions of the above solutions and,
therefore, analyses. Differentiating Eq. (33) twice and evaluating
at 7, yields ”(7s)=2C1— ns Applying the boundary condition

f"(75)=0 at 7=7n; (Eq. (25)) yields

s

Gi=5 (41)
Substituting back into Eqg. (33) gives for the distribution
3 2 3
1
A e
2 s 3\ s

Since ®=0 at 5= then C,=-1/ s resulting in the tempera-
ture distribution
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®=1- (1) (43)
s
Equations (41)-(43) are also obtained by Fujii [35]; however,
ways on how to validate the assumptions are not presented.
The energy balance equation requires the values of f(#;s) and
O'(7s). Thus, upon substitution of Egs. (42) and (43) into Eq.

(30)
cp(T, - T 3 1
( " W [—3 Pr(ﬁ)]/[— —] =Pr(7,)*
lig 3 75
Solving for 7, yields
_ [cE(TU - m]”“
Ns= .
ifg Pr
Substituting for zs from Eq. (26) into Eq. (44) gives Eq. (45),
which is the boundary layer thickness result given in almost all
textbooks

(44)

_ 1/4
5o [M(T_T)] 45)

Qig Pr
Substituting Egs. (19) and (21) into the heat flux equation

aT
-fg
(9y y=0

g 1/4
q"=-k(T,- Tw)®'(0)<m>

As discussed by Seban in Ref. [37], for

results in

(46)

1 igPr ¥4
o0 Lar| P
N5 Cp(Tv_Tw)
the heat flux reduces to
Qigq Pr )1/4
Tk T e
=K W)<4V2XCp(TU—TW)

Thus, applying Newton’s Law of Cooling, the local Nusselt num-
ber Nu,=h,x/k can be obtained as

q” X
Nu, = X
e (TU—TW)k

igPrx3 b4

4¢,(T, = Ty)??
Using an alternate definition of the Prandtl number Pr=wpc,/k,
the local Nusselt number, as found in most textbooks, becomes

or

(47)

i X3 1/4
Nu, = 0.70711[M— (48)

kv(T, = Ty)
Once the local Nusselt number is known, the local convective
heat transfer coefficient is determined by
Nu,k
h,= —XX
Prior to using the three results, Egs. (45) and (47) or (48) and
(49), the three restrictive conditions, Egs. (7) and (8), and the
laminar film condensate, must be validated.

(49)

6 Validation of Restrictive Conditions

The validation of this result is the most important aspect of this
paper. Nowhere in literature does it exist so that the student can
depend on the use of the results. Therefore, the range of applica-
bility for this result is as follows:

111501-4 / Vol. 131, NOVEMBER 2009

(1) Negligible inertia. Using Egs. (38) and (40),
T,-T
|:EP(U—W):| <20
'fg Pr
which implies
(T, - T
|:_P(U—W):| <2 (50)
'fg Pr
Sparrow and Gregg [37] reported this result but not as a
limitation for the final solution. White [29] presented a
similar result in the form of Ja<<1; however, since no
analysis is given, it is a mystery as to how it is obtained.
(2) Negligible convection. Using Egs. (40) and (41),
[CE(T? - TW)] g
ifg
which implies
[N_H] ~os
ifg
White [29] reported this result in the form (Regla/Pr)
<1, again with no analysis.

(51)

Thus, both conditions, Egs. (50) and (51), must hold in addition
to the laminar film assumption before Eq. (45) for boundary layer
thickness or Eq. (47) or Eq. (48) for Nu, would have any validity.
Nowhere in literature do these exist as an explicit equation, which
can be utilized by the student, instructor, or the researcher.

For the range of applicability for the laminar film condition,
and following Giedt [15],

4us
Rep, = 7 < 2000 (52)

where Dy is the hydraulic diameter equal to the ratio of the cross-
sectional area of the conduit to the wetted perimeter. Mean veloc-

ity is given by
u=so ! ﬁud
= 5 . y

Upon transformation and substitution of Egs. (19) and (20), mean
velocity becomes

_ (64 V2X3)1/4
=0ty (53)
Using Egs. (42), (45), and (53), Eq. (52) reduces to
—- 1/3
[M} < 4293(%) (54)
irg Pr gx

Equations (50), (51), and (54) are the restrictive conditions.
Therefore, in order to use Egs. (45) and (47) or (48) and (49), the
inequalities of Egs. (50), (51), and (54) must be satisfied. If any of
these conditions is not met, then the equations for the boundary
layer thickness, the Nusselt number, and the local convective heat
transfer coefficient, Eqgs. (45) and (47) or (48) and (49), respec-
tively, cannot be used.

7 Conclusions

Heat transfer analyses are important particularly in engineering
design of devices involving condensation. Therefore, condensa-
tion results given in textbooks are integral to this design process.
However, none of the textbooks in print go through the complete
and analytically rigorous similarity analysis, showing the required
restrictions on the applicability of the results to calculate the
boundary layer thickness, the Nusselt number, or the convective
heat transfer coefficient, Eqgs. (45) and (47) or (48) and (49). This
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article identifies and quantifies these critical three restrictive con-
ditions, Egs. (50), (51), and (54), that one must satisfy before
using any of the results.

Nomenclature
C = constant
= specific heat, (kJ/kg K)
= substantial (material) derivative
= internal energy, (kJ/kg)
Ec = Eckert number, U2/c,(Ty~T..)
= force vector per mass, (N/kg)
= similarity velocity transform
gravitational acceleration, (m/s?)
= convective heat transfer coefficient,
(W/(m? K))

i = enthalpy, (kJ/kg)

Ja = Jacob number, c,(T,~Ty)/itg

k = thermal conductivity, (W/m K)

m = mass, (kg)

p = pressure, (kPa)
Pé = Péclet number, (Re)(Pr)

Pr = Prandtl number, c,u/k=v/a=cppv/k
Re = Reynolds number, Vx /v
= temperature, (K)
= time, (s)
= velocity component in the x direction, (m/s)
= mean velocity, (m/s)
velocity component in the y direction, (m/s)
= volume, (m®)
velocity, (m/s)
velocity component in the z direction, (m/s)
= direction, (m)
= direction, (m)
= direction, (m)

o U o

SQ = Tl
Il

N< x =< <eclecHd4
|

Subscripts
¢ = characteristic

Dy = hydraulic diameter, (m)

fg = liquid-vapor phase change
= length
= constant pressure
= constant volume, vapor
wall
= freestream
= evaluated at the boundary layer thickness

o 8 EceoT
Il

Superscripts
" = derivative with respect to time

Greek Symbols

a = thermal diffusivity, (m?/s)
= boundary layer thickness, (m)
= vector operator
= viscous dissipation, (W/m?)
= similarity coordinate transform
nondimensional temperature
dynamic viscosity, (N s/m?)
= kinematic viscosity, (m?/s)

TR O3 & do,
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& dummy variable
p = density, (kg/m®)
W = stream function
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Periodic Fluid Flow and Heat
Transfer in a Square Cavity Due to
an Insulated or Isothermal
Rotating Cylinder

The periodic state of laminar flow and heat transfer due to an insulated or isothermal
rotating cylinder object in a square cavity is investigated computationally. A finite-
volume-based computational methodology utilizing primitive variables is used. Various
rotating objects (circle, square, and equilateral triangle) with different sizes are placed in
the middle of a square cavity. A combination of a fixed computational grid and a sliding
mesh was utilized for the square and triangle shapes. For the insulated and isothermal
objects, the cavity is maintained as differentially heated and isothermal enclosures, re-
spectively. Natural convection heat transfer is neglected. For a given shape of the object
and a constant angular velocity, a range of rotating Reynolds numbers are covered for a
Pr =5 fluid. The Reynolds numbers were selected so that the flow fields are not generally
affected by the Taylor instabilities (Ta<1750). The periodic flow field, the interaction of
the rotating objects with the recirculating vortices at the four corners, and the periodic
channeling effect of the traversing vertices are clearly elucidated. The simulations of the
dynamic flow fields were confirmed against experimental data obtained by particle image
velocimetry. The corresponding thermal fields in relation to the evolving flow patterns
and the skewness of the temperature contours in comparison to the conduction-only case
were discussed. The skewness is observed to become more marked as the Reynolds
number is lowered. Transient variations of the average Nusselt numbers of the respective
systems show that for high Re numbers, a quasiperiodic behavior due to the onset of the
Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is
clearly observed. Time-integrated average Nusselt numbers of the insulated and isother-
mal object systems were correlated with the rotational Reynolds number and shape of the
object. For high Re numbers, the performance of the system is independent of the shape
of the object. On the other hand, with lowering of the hydraulic diameter (i.e., bigger
objects), the triangle and the circle exhibit the highest and lowest heat transfers, respec-
tively. High intensity of the periodic channeling and not its frequency is identified as the
cause of the observed enhancement. [DOI: 10.1115/1.3154620]

1 Introduction

Control and regulation of convective flows through active and
passive means are extremely important to design of heat exchange
systems. To this end, variations of both techniques in a simple
square cavity addressing lid-driven flow [1], buoyancy-driven
convection within a differentially heated cavity [2], and forced
convection within a cavity with inlet and outlet ports [3] have
been studied. In addition to the simplicity of the square cavity
geometry, the observed cavity flows exhibited simultaneous exis-
tence of diverse regimes involving boundary layers, multiple cel-
lular flow regions, and dynamic flow fields. Moreover, many prac-
tical problems can be simplified to a cavity model. These include
design of mixing chambers, cooling of electronic components,
ventilation of buildings, design of solar collectors, thermal storage
units, lubrication of journal bearings, etc.

One technique for active regulation of heat transfer in
convection-dominated heat exchange systems is through con-
trolled movement of a wetted boundary. In order to assess the
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viability of this idea to a square cavity with rigid walls, a compu-
tational study of the flow and thermal fields due to a rotating
object in a square cavity was undertaken. In light of the math-
ematical complexity of the analysis of unsteady flow of a noncir-
cular rotating cylinder (triangle and rectangle) in a square cavity,
no prior study with such a focus exists. Rotating circular cylinders
within rectangular enclosures lend themselves to a steady formu-
lation and were studied by Lewis [4] and Hellou and Coutanceau
[5], respectively. A study of two rotating circular cylinders within
a rectangle was reported by Hills [6]. Kimura et al. [7] provide
experimental data for natural convection within a differentially
heated square cavity that is affected by a rotating horizontal cir-
cular cylinder.

Undoubtedly, the classic problem of flow within the spacing of
two concentric circular cylinders in relative motion is linked to the
subject of this paper. In extending the applicability of this classic
problem to oil drilling operations, a great number of investigations
have reported the effects of eccentricity of the inner circular cyl-
inder and behavior of non-Newtonian fluids. Most notably, the
exhaustive list of references provided by Escudier et al. [8] can be
a good starting point for those interested in this related problem.

In covering the spectrum of thermal boundary conditions and
keeping in mind the limiting problems of nonrotating objects as
benchmark states, results for the two cases of an insulated rotating
object within a differentially heated square cavity and an isother-
mal rotating object within a square cavity with constant wall tem-
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Fig. 1 Schematic diagrams of a rotating (a) insulated object
within a differentially heated cavity and (b) isothermal object
within a cavity with a different constant temperature

peratures are discussed in this paper. Analyses of noncircular ro-
tating cylinders (square and triangle) stand out as a novel aspect
of the present study.

2 Problem Formulation

The physical models for two 2D cavities (height H and length
L) are shown in Figs. 1(a) and 1(b). For the present study, it is
assumed that H=L and four walls of the cavities are stationary.
The fluid within the cavities is assumed to be incompressible with
constant properties. An object is allowed to rotate within the cavi-
ties with the rotational speed w. The axis of rotation passes
through the centroid of the object that coincides with the center of
the cavities. Three rotating objects, including circle, square, and
equilateral triangle, are considered. The rotating object is assumed
to be made of an insulated material in Fig. 1(a), whereas a highly
conductive object (thus isothermal) is considered in Fig. 1(b). For
the adiabatic object (Fig. 1(a)), the left and right walls are main-
tained at constant temperatures Ty and T, respectively, whereas
the top and bottom walls are insulated. For the case of an isother-
mal object (Fig. 1(b)), its temperature is kept at a constant value
(Ty) different from the remaining walls of the cavity (T¢). For
both cases, the condition Ty > T is assumed. The gravity effect
and viscous dissipation are neglected. The scope of this study is
only limited to the laminar flow regime. Moreover, in order to
avoid Taylor instabilities, the Taylor number that is defined as
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Rp?(0.5H - R)*w?
Ta= RPOSH R’ - S’ (1)
73
needs to be below 1750 [9], with R being the radius of an equiva-
lent object with a circular cross section. This equivalency issue
will be clarified in Sec. 2.1.

2.1 Geometric and Dynamic Scaling of the Problem. The
side of the cavity is a natural length scale for the geometric scal-
ing of the problem. However, the dynamics of the flow field needs
to be scaled with a meaningful length scale associated with the
passageway available to the fluid. Such a hydraulic diameter is
defined in studies of porous media and is expressed by Middleman
[10]

fluid volume
wetted area

)

h=

For a rotating cylinder with a circular cross section (diameter D),
the hydraulic diameter is

- H? - 7D°/4 @)
"7 4H+ 7D

Hydraulic diameter for a square (side €) in the cavity is given by
H2 _ €2

Dp.=2 4

T CaH + 4€ @

whereas for an equilateral triangle (side S) in the cavity, it is
H? - \3/48?2
Dpi=2————— 5
M7 4H+3s ®

Using these relations to impose equivalency of the hydraulic di-
ameters, one will be able to directly compare the benefits and
drawbacks of various shapes. Note that for very small objects, the
hydraulic diameter tends to H/2.

2.2 Dimensionless Form of the Governing Equations. The
dimensionless form of the governing equations can be obtained
via introducing the following dimensionless variables:

X y u v
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The governing equations of continuity, momentum, and thermal
energy are then written in dimensionless forms:
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with the Prandtl number defined as Pr=v/« and the Reynolds
number is based on the hydraulic diameter Dy:

Z[0] a0

(10)

_ pDﬁw
M

The effect of natural convection is neglected, so that the ratio
Gr/Re? is taken to be much smaller than 1. Consequently, this
problem is dependent on the dimensionless parameter D;,/H, Pr,

Re (11)
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Table 1 Number of cycles for three rotating isothermal objects
to reach periodic or quasiperiodic states for nine size ratios

Circle Square Triangle

Re=111 Ta=1244 1801 362 670
Re=92 Ta=1748 165 234 644
Re=74 Ta=1756 160 107 131
Re=58 Ta=1475 125 93 100
Re=44 Ta=1067 105 82 91

Re=31 Ta=655 90 47 86

Re=21 Ta=323 75 41 N/A
Re=12 Ta=109 70 37 N/A
Re=6 Ta=15 60 N/A N/A

and Re; however, it must be noted that in this paper with w
=const, the hydraulic diameter to cavity side ratio and the Rey-
nolds numbers are linked to each other. Thus, combinations of the
Pr and Re numbers define this problem.

To simplify the numerical simulation, the rotating objects are
assumed to be hollow. The flow boundary conditions on the cavity
walls and on the surface of the rotating object satisfy the no-slip
condition. For the insulated rotating objects, adiabatic condition
(90 /0n=0) is imposed on their surfaces, with n standing for the
unit normal vector on that surface. The thermal boundary condi-
tions of the left and right walls of the cavity are fixed at ®=1 and
®=0, respectively, and the remaining walls are insulated. For the
isothermal rotating objects, ®=1 is imposed on their surfaces.
The thermal boundary conditions of cavity walls are fixed at ®
=0. Regardless of the thermal states of the solid boundaries, the
initial conditions for velocity and temperature fields are zero ve-
locity and @ =0, respectively.

In this study, the Prandtl number of the fluid is fixed to 5. The
effect of the size of the rotating objects on the transient behavior
of fluid flow and heat transfer within the cavity were studied by
varying the Reynolds numbers between 6 and 111, while keeping
the angular velocity constant (Table 1). For the case of a rotating
circle, this was achieved by varying the diameter to side ratio
(D/H) from 0.1 (Re=111) to 0.9 (Re=6) in 0.1 increments (a
total of nine cases). As for the rotating square and triangle objects,
their dimensions were computed by demanding an equivalent hy-
draulic diameter and utilizing Egs. (4) and (5), respectively. For
the square and triangle shapes, the viable number of cases that did
not involve collision of the object and the cavity were eight and
six, respectively. Therefore, a total of 23 cases were simulated for
different shapes. The Taylor numbers for these runs were kept of
the order of 1750 or lower.

2.3 Computational Details. The numerical technique
adopted in this study is based on the finite volume method [11].
The unsteady governing equations including continuity, momen-
tum, and thermal energy equations can be expressed in their con-
servative form and are solved by the computational fluid dynam-
ics (CFD) software FLUENT [12]. In this study, a hybrid structured/
unstructured staggered grid system is used. The diffusion-
convection term of the conservative equation is discretized by the
second-order upwind scheme and the second-order implicit
method is used to discretize the transient term. By employing the
iterative scheme of a point implicit (Gauss—Seidel) linear equation
solver in conjunction with an algebraic multigrid (AMG) method,
the pressure, velocity, and temperature fields can be solved. Dur-
ing the iterative procedure, the piso algorithm is employed to
solve the pressure-velocity coupling equations.

To simulate the flow field generated by a rotating circular ob-
ject, a boundary condition of velocity magnitude equal to Rw is
imposed on the surface of the circle. Regarding the flow induced
by the rotating object with the shape of a square or an equilateral
triangle, the method of sliding meshes is employed in view of its
availability in the chosen commercial CFD code, thus favoring it
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over other existing methodologies for treating moving boundary
problems (e.g., Behr and Tezduyar [13] and Tai et al. [14]). In
utilizing a sliding mesh, one does not need to regrid at each time
step, so that the grid number is always the same. The computa-
tional domain is divided into two parts. One is the rotating zone
and the other is the stationary region. The rotating zone is defined
as a circular region, part of which contains the square or equilat-
eral triangle object. A grid interface to connect both regions needs
to be defined. Once the simulation is started, the rotating zone
slides along the grid interface thus causing the square or triangle
object to spin, whereas the grids in the stationary region are kept
motionless.

It takes a time period equal to 7=27/ w for a fixed point on an
object to rotate one revolution. After conducting a time-step inde-
pendence test, the time step for numerical simulation was chosen
as 7/240. Grid-independence tests for various objects were under-
taken. For instance, a grid-independence test for a rotating circle
at Re=111 was performed for five grid densities (6000, 12,900,
22,400, 34,500, and 49,200 cells) for an isothermal rotating object
inside a constant temperature cavity. The numerical results re-
vealed that the relative errors for both average skin friction coef-
ficients and average Nusselt numbers on the surface of the rotating
circle and cavity walls decrease with the increase in grid density.
The difference between the numerical results based on the 34,500
and 49,200 cells was insignificant. The grid-independence test
proved the numerical robustness of FLUENT in solving this prob-
lem and a grid density with 34,500 cells was employed for the
production runs. The convergence criteria of each time step for the
energy equation and other equations required that the normalized
residuals become smaller than 107 and 1073, respectively. The
numerical simulation of each case was stopped when the differ-
ence of the average Nusselt numbers on the high- and low-
temperature walls were less than 0.01%. Given this criterion, the
numbers of cycles for various isothermal rotating objects to reach
their periodic or quasiperiodic states are summarized in Table 1. A
similar procedure was followed for insulated rotating objects.

3 Flow Visualization and PIV

In order to validate the results of simulations, a transparent
model of the flow system under consideration was built. The side
of the square cavity was 7.62 cm and the test section had a height
of 46.35 cm. The rotating objects with heights of 46.05 cm were
machined from aluminum and painted black to minimize their
interaction with the laser sheet. The working fluid was water. A
variable-speed motor was utilized to achieve the desired speed of
the rotation of the object. Flow visualization was carried out using
silver-coated hollow glass spheres with a nominal diameter of
20 wm suspended in the fluid. These particles were also used as
seeds for particle image velocimetry (PIV) measurements and
were illuminated by a 5 W argon ion laser. The light sheet was
generated using two OZ Optics fiber optic laser light sheet gen-
erators. An optical coupler with a built-in beam splitter was used
to illuminate a horizontal field of view of the cross section of the
cavity at the middle of the setup. Thickness of the laser sheet was
1 mm. The images were captured using a Dantec HiSense PIV/
PLIF camera model C4742-53-12NR and were recorded on a JVC
model BR-S622DXU professional video recorder.

A Dantec Dynamics PIV system consisting of 50 mJ dual-
pulsed yttrium aluminum garnet (YAG) lasers, and 1000
X 1200 pixel cross-correlation camera was used to measure ve-
locities on the planes of interest. The results were postprocessed
using cross correlation and adaptive correlation of dual images
taken at a separation time ranging from 120 us to 1200 wus.
Mean velocity and other statistics of the flow structures were com-
puted using a set of 50 images for each case tested using 32
X 32 pixel interrogation window.
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Fig. 2 Comparison of the (a) steady streamlines for a rotating
circle and (b) instantaneous streamlines for a rotating square
with Reynolds numbers of 111 (top), 44 (middle), 6 for the
circle, and 21 for square (bottom) at the end of a cycle

4 Results and Discussion

The periodic flow and thermal fields for the posed problem are
discussed now. Starting with the stated initial fields, the object
was set in rotation at t=0. Upon attaining the periodic state, the
periodicity of the flow and thermal fields for a fixed observer
depends on the shape of the object and is equal to 27/ wN, with N
being the number of mirror symmetries of the object (i.e., 3, 4,
and o for triangle, square, and circle, respectively). All the results
presented here correspond to the cases upon attaining the periodic
state that were discussed in Sec. 2.3. In the absence of the
buoyancy-driven convection, the flow field is independent of the
imposed thermal boundary conditions and thus will be discussed
first without regard to the specific thermal conditions.

4.1 Periodic Flow Field. The evolving flow field surrounding
an object that starts to rotate at time t=0 will be dependent on the
shape of the object, the imposed Reynolds number, and the radial
pressure gradient. In general, upon setting the object into rotation,
a thin, shear layer is formed adjacent to the surface of the object.
This shearing layer will grow with time and eventually affects the
fluid that is farthest from the object. The steady flow patterns
attained by a rotating circle for the low, midrange, and high Rey-
nolds numbers are shown in Fig. 2(a). The streamlines were per-
fectly circular in the close vicinity of the surface of the rotating
circle; however, moving away from the surface of the object, the
streamlines start deviating from circular patterns as the wall of the
cavity was neared. This deviation becomes more marked as the
Reynolds number was lowered that corresponds to lowering of the
hydraulic diameter for this study (case of a bigger circle). It is
clearly observed that the four recirculating vortices at the corners
of the cavity for a rotating circle were identical. The sizes of these
vortices were strengthened as the Reynolds number is lowered.
Regardless of the Re, the streamline patterns within these identical
vortices exhibited symmetry only about the center point of the
square cavity. These observations of the flow fields due to a rotat-
ing circular cylinder in a square cavity were found to match the
flow visualization and computational results of Lewis [4] and Hel-
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lou and Coutanceau [5] very well.

For comparison purposes, the instantaneous streamlines for the
rotating squares with Re=111, 44, and 21 are shown in Fig. 2(b).
Note that for the case of the biggest object, matching of the Re
number between the circle and square objects is not possible due
to the diagonal of the square becoming longer than the side of the
cavity. The time instant shown is when the sides of the square are
parallel to the walls of the cavity. For the highest Reynolds num-
ber case, the behavior of the streamlines and the corner vortices
are similar to what was observed for a rotating circle with the
same Reynolds number (Fig. 2(a)). As the side of the square is
increased, the streamlines turn into noncircular closed curves and
the recirculating vortices at the four corners grow in size. For the
lowest Reynolds number of 21, the streamlines next to the cavity
walls are more wrinkled and recirculation zones anchored to the
four corners of the cavity are clearly observed. The observed sym-
metry of the shape of the vortices about the center point of the
cavity (Fig. 2(a)) is still maintained. Even though these vortices
are identical at the shown time instant, their individual dynamic
characteristics within a cycle will be highlighted shortly. It must
be noted that unlike classic corner Stokes vortices [15], each in-
dividual corner vortex observed in Fig. 2 does not possess mirror
symmetry about its respective diagonal of the cavity and is clearly
affected by the dynamic “stirring” force of the object.

The instantaneous streamlines for a rotating square with Re
=31 during a quarter of a full period of revolution (7/4=m/2w)
are shown at different phase angles () in Fig. 3. The streamline
patterns at the beginning of the cycle (Fig. 3(a)) possess the fea-
tures discussed in Fig. 2(b). Upon turning of the square in the
counterclockwise direction, the vortices and the circularlike
streamline patterns evolve with time. Specifically, the corner vor-
tices attain their smallest size at about 7/8 (Figs. 3(e) and 3(f)).
During the remainder of the cycle, the sizes of the vortices in-
crease. Moreover, due to the even number of vertices of the square
object, the symmetry of the streamlines within these vortices
about the center of the cavity is clearly maintained. For a rotating
triangle with the same Re, the instantaneous streamlines during
one-third of a full period of revolution (7/3=27/3w) are shown
in Fig. 4. Due to the odd number of the vertices of the object, the
corner vortices are of different sizes at any instant and no sym-
metry about the center of the cavity is expected. Marked asym-
metry of the individual corner vortex about the bisector of each
corner is observed when the vertex of the object is at the close
proximity to that corner (e.g., top left corner of Figs. 4(d)-4(f)).
One can also note that the flow patterns at time instants (t) and
(t+7/4) are identical (e.g., time instants of Figs. 4(a) and 4(j)) if
one considers a 90 deg rotation between the respective two im-
ages. The most interesting aspect of the dynamic flow fields of
Figs. 3 and 4 has to do with the “periodic channeling” of the flow
next to a cavity wall. In comparison to the steady flow counterpart
offered by a rotating circle with the same Re, channeling will
cause the fluid between the traversing vertex of the object and the
fixed wall of the cavity to flow faster. This, in turn, will affect the
thermal field, to be discussed in Secs. 4.2 and 4.3.

The instantaneous velocity vectors and streamlines that were
determined using the PV measurements for a rotating square and
triangle are shown in Figs. 5 and 6, respectively, with Re=31.
Depending on the shape of the object and its orientation, a certain
region of the cavity is not accessible by the laser sheet and no data
are shown in those zones. The general features of the unsteady
flow fields that were discussed earlier in presenting Figs. 2—4 are
clearly observed in the experimental PIV data, thus verifying the
capabilities of the CFD code and the employed methodology to
simulate this problem.

Having discussed the periodic flow field that is common to the
two thermal boundary conditions, we now present results of the
thermal fields for each specific systems of Figs. 1(a) and 1(b).
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Fig. 3 Instantaneous streamlines under periodic conditions
for a rotating square with Re=31 shown at 10 deg increments
during a 7/4 cycle

4.2 Periodic Heat Transfer for an Insulated Rotating
Object. The temperature contours corresponding to the time in-
stant exhibited in Fig. 2(b) for the rotating insulated squares with
Re=111, 44, and 21 are shown in Fig. 7. Note that the contour
level increment for the temperature field is 0.05. In the absence of
the object and with no primer for convection, a pure conduction
temperature field would have resulted (i.e., ®=X leading to
equally spaced vertical lines). It is observed that the rotational
motion of the object greatly modifies the purely conductive mode
of heat transfer and the temperature contours are skewed. The
extent of skewness becomes more marked as the rotational Rey-
nolds number is lowered. As Re is lowered, steep temperature
gradients next to the active walls of the cavity indicate enhance-
ment of heat transfer. These walls are also affected by the periodic
“channeling” at other time instants. The temperature contours ex-
hibit symmetry about the axis of rotation for the square object due
to the even number of vertices. Instantaneous temperature con-
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Fig. 4 Instantaneous streamlines under periodic conditions
for a rotating triangle with Re=31 shown at 10 deg increments
during a 7/3 cycle

tours during a full period of revolution are not shown here since
the observed changes of this scalar field was not as varied of the
dynamic streamline patterns.

4.2.1 Instantaneous Nusselt Numbers on the Active Walls.
Transient variation in the instantaneous surface-averaged Nusselt
numbers on the left and right walls (surface average of

D, 76
H X |y
or
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Fig. 5 Instantaneous measured velocity vectors and stream-
lines for a rotating square with Re=31 shown at four time
instants

Dy 0
H X |y

respectively) during 5 cycles for the case of a rotating square with
Re=111 and 31 are shown in Fig. 8. For Re equal to and less than
58 (e.g., bottom row of Fig. 8 with Re=31), the Taylor numbers
are of the order of 1475 and lower. Taylor instabilities are not
expected for this case (Re=31 and Ta=655) and the periodicity of
the system is directly linked to the shape of the square object
which exhibits a beating at 1/4 of 7. For this specific case, no
noticeable phase shift between the Nusselt numbers on the left and
right walls is observed. For cases with Re greater than or equal to
74, the Taylor numbers are of the order of 1200 and higher. For
the specific case shown in Fig. 8 (top row with Re=111 and Ta
=1244), quasiperiodic oscillations that do not reveal the nature of
the square object are observed. This may be viewed as a signal
indicating the onset of the Taylor instabilities.

Transient variation in the average Nusselt numbers on the left

Fig. 6 Instantaneous measured velocity vectors and stream-
lines for a rotating triangle with Re=31 shown at six time
instants

111701-6 / Vol. 131, NOVEMBER 2009

Fig. 7 Temperature contours for a rotating insulated square
with Reynolds numbers of 111, 44, and 21 at the end of a cycle
(contour level increment of 0.05)

and right walls during 5 cycles for the case of a rotating triangle
with Re=111 and 31 are shown in Fig. 9. For the case with Re
=111 (top row of Fig. 9), quasiperiodic oscillation is exhibited
with the dominant period of oscillations being about 1/3 of =
=2/ w. Alow frequency oscillation with its period of the order of
7 is also evident. For Reynolds numbers equal to and less than 74
(e.g., bottom row of Fig. 9), the periodicity of the system that
distinctly beats at 1/3 of 7 is observed. A phase shift between the
Nusselt numbers on the left and right walls of the order of 7 is
observed for the cases shown in Fig. 9.

4.2.2 Average Nusselt Number of the Insulated Object System.
Time-integrated average Nusselt numbers on the left and right
walls of the cavity were computed over the last 5 cycles and they
were identical, as expected. The dependence of the time-averaged
Nusselt number on the left wall of the cavity with the Reynolds
number for three different rotating objects is shown in Fig. 10.
Note that for the range of the Reynolds number studied, the sys-
tem consistently exhibits higher heat transfer rates compared with
the case associated with a conduction-only object-free condition
(Nu=Dy/H=0.5). As expected, the Nusselt number of the system
for the highest Reynolds number studied (Re=111) is independent
of the shape of the rotating object. One would expect that for
higher values of the Reynolds number, the Nusselt number will
asymptotically approach 1/2, irrespective of the shape of the ob-
ject. The distinctions among the three rotating shapes become
clear as the size of the object is increased and the Reynolds num-
ber is lowered. As the diameter of the circle is increased (keeping
angular velocity constant), the heat transfer rate is raised reaching
a maximum of about Re=44. Further increase in the diameter of
the circle degrades the heat transfer rate since the adiabatic rotat-
ing circle acts as a resistance to heat transfer. However, the square
and triangle objects behave differently by exhibiting monotonic
rise of the heat transfer rate. This is due to the dynamic flow fields
that were observed in Figs. 3 and 4, featuring the “periodic chan-
neling” of the flow on the four sides. For the Reynolds number
range Re =80, the rotating circle exhibits the lowest heat transfer
among the three objects, whereas the triangle exhibits the highest
heat transfer. The higher heat transfer of the triangle compared
with the square can be explained by the greater intensity of the
channeling (shorter distance between the wall and the vertex) as
opposed to the greater frequency of channeling (4 for square ver-
sus 3 for a triangle in 1 cycle). It may be noted that there are no
experimental heat transfer data against which our predictions can
be benchmarked. However, the present results for a rotating cir-
cular object system are found to be of the same order of magni-
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tude of the experimental data of Kimura et al. [7] that report
higher heat transfer rates due to natural convection.

4.3 Periodic Heat Transfer for an Isothermal Rotating
Object. At the beginning of rotation of an isothermal object, a
thermal wave starts to spread from its surface toward the isother-
mal cavity walls. This is similar to the spreading of viscous effects
generated from the surface of the rotating object into the fluid.
The larger the hydraulic diameter is, the longer it takes for the
temperature field to reach the periodic or quasiperiodic state. The
steady temperature contours of a rotating circle for different Rey-
nolds numbers are displayed in Fig. 11(a), which correspond to
flow patterns of Fig. 2(a). Basically, the temperature contour pat-
terns are symmetric about the axis of rotation. Similar to flow
patterns, the isothermal lines for the cases with high Re are per-
fectly circular next to the surface of the rotating circle and they
start deforming as the wall of the cavity is neared. However, for
the case with Re=6, the rotating circle occupies a great portion of
the cavity and isothermal lines are greatly distorted next to the
four corners of cavity owing to the influence of strong corner
vortices (Fig. 2(a)) in comparison to the smaller vortices for
higher Re numbers. Also note the effect of the steady channeling
on the thermal field at the narrow gap between the circle and the
midpoints of the walls of the cavity, as indicated by the pro-
nounced temperature gradient. For comparison purposes, the in-
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stantaneous temperature contours for the rotating squares with
Re=111, 74, and 12 and triangles with Re=111, 74, and 31 are
shown in Figs. 11(b) and 11(c), respectively. Similar to the dis-
cussion above in relation to Fig. 2, Re numbers on the low end
cannot be matched for various objects. The time instant shown is
when a side of the square and the bottom of the triangle are
parallel to the bottom wall of the cavity. The isothermal lines near
the square and triangle objects follow the shape of the object;
however, they start conforming to the shape of the cavity wall as
one nears those surfaces. For these cases, the isotherms are not
greatly distorted by the corner vortices. For the low Re numbers
associated with the square and triangle objects (bigger objects), it
can be observed that marked temperature gradients occur near the
vertices of the objects, owing to the strong shearing of the flow
field near these points and periodic channeling. Simultaneously,
strong temperature gradients are also observed next to the mid-
points of the side walls of the cavity, which were already identi-
fied as sites where periodic channeling occurs. Appreciable distor-
tions of isothermal lines are also observed for the low Re numbers
associated with the square and triangle objects owing to the domi-
nance of the corner vortices.

4.3.1 Instantaneous Nusselt Numbers on the Surface of the
Rotating Object and Cavity Walls. Transient variation in the aver-
age Nusselt numbers on the surfaces of a rotating square and
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Fig. 11 Comparison of the temperature contours for (a) steady
rotating circle, (b) rotating square, and (c) rotating triangle,
with Reynolds numbers of 111 (top), 44 for circle, 74 for square
and triangle (middle), 6 for circle, 12 for square, and 31 for
triangle (bottom) at the end of a cycle (contour level increment
of 0.05)
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cavity during 5 cycles with Re=111 and 31 are shown in Fig. 12.
For the cases with Re greater than or equal to 74, the Taylor
numbers are of the order of 1250 and higher. The onset of Taylor
instabilities for these cases is observed and the resulting quasip-
eriodic signature on the surface of the rotating object with the
dominant period of oscillations being equal to 1/4 of 7=27/w is
observed (e.g., top row and left column with Re=111). At the
same time, high-frequency oscillations are also observed for these
cases. On the other hand, for the same Reynolds number, a peri-
odic variation in the instantaneous Nusselt numbers is exhibited
on the walls of the cavity (e.g., top row and right column with
Re=111). For Reynolds numbers equal to and less than 58 (e.g.,
bottom row of Fig. 12), periodicity of the system beating at 7/4 is
clearly observed on the surface of the object and walls of the
cavity. For low Reynolds numbers, there is also a phase angle
associated with the variations of instantaneous Nusselt numbers,
with the wall values falling behind those on the object.

4.3.2 Average Nusselt Numbers of the Isothermal Object
System. The time-averaged Nusselt numbers on the surface of the
object and cavity were calculated for the last five periodic cycles.
The time-averaged Nusselt numbers versus the Reynolds number
on the surfaces of the rotating circle, square, and triangle, as well
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Fig. 13 Time-averaged Nusselt number versus Reynolds num-
ber on the surfaces of different isothermal rotating objects
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as on the cavity walls are shown in Figs. 13 and 14, respectively.
For comparison purposes, the analytic solution of steady conduc-
tive heat transfer between two concentric cylinders (inner and
outer radii of R; and R, maintained at temperatures Ty and T¢
with T,y > T¢) was obtained. The expressions for the Nusselt num-
bers on the rotating cylinder and the outer cylinder are

<Nuh> = In B (12)
and
— _(B-1)
(Nug) = Y (13)

respectively, with 8=R;/R,<1. Note that both Nusselt numbers
approach unity for 8— 1, whereas (Nu,)— and (Nu;)—0 for
B—0. The expression for the Nusselt number on the surface of
the inner rotating cylinder for the case of two concentric cylinders
(Eq. (12)) is plotted in Fig. 13. For high Re values studied that
correspond to cases of an object with a small diameter in com-
parison to the side of the cavity, the monotonic rise of heat trans-
fer is observed for all three objects and the analytic solution per-
fectly matches the computed quantities for the case of a rotating
cylinder. For these cases, heat transfer from surfaces of equivalent
rotating squares and triangles were lower compared with the ro-
tating circles. This can easily be explained by the increased wetted
surface of the objects (Ag, <Ay <Ay that holds true for all the
objects with identical hydraulic diameters. As the sizes of the
objects are increased (i.e., the Reynolds number is lowered), heat
transfer rates are always greater than the limiting analytic solution
and it is observed that they start increasing at different values of
the Dy/H ratios (thus corresponding to different Re numbers).
This phenomenon is in contrast to the limiting analytic result for
heat conduction between two concentric cylinders, thus suggest-
ing that convective effects due to rotation of the object and the
specific shape are contributing to this effect. The observed points
of inflection for the circle, square, and triangle occurred at Re
=12, 31, and 44, respectively. Once again, periodic channeling
explains these variations clearly. For bigger objects, the vertices of
the triangle come closest to the wall of the cavity followed by the
square, whereas the fixed position of the rotating circle is associ-
ated with the least effective channeling. Due to periodic channel-
ing and the ensuing dense packing of temperature contours, en-
hancement of heat transfer is realized.

For a proper discussion of heat transfer on the walls of the

111701-10 / Vol. 131, NOVEMBER 2009

Table 2 Constants of the correlation (Eq. (14)) for various ob-
jects (R-squared ranges of 0.9177 and 0.9926)

a b Range of Re

Circle 3.5304 —0.4899 21<Re=111
1.9748 —0.3318 6<Re=21

Square 6.7646 —0.6430 31<Re=111
9.7397 —0.7794 12<Re=31

Triangle 31.9764 —0.9889 58<Re=111
32.8666 —1.0064 31<Re=58

cavity, the analytic expression for the Nusselt number on the sur-
face of outer cylinder for the case of two concentric cylinders (Eq.
(13)) was multiplied by /4 and then plotted in Fig. 14. This
approximation accounts for the bigger circumference of a square
that has a side equal to the diameter of the circle that it touches
and encloses simultaneously. Note that for high Re numbers, heat
transfer on the wall of the cavity due to various rotating objects
are identical to the approximated case of heat conduction between
a circle enclosed by a square. In effect, since the rotating object is
very small, its shape becomes immaterial to the temperature con-
tours next to the walls of the cavity. As the Reynolds number is
lowered, heat transfer rates are greatly enhanced due to the peri-
odic channeling offered by different objects. The intense channel-
ing supported by the triangle shape clearly exhibits superior heat
exchange capability among the three objects, whereas the circle
performs the weakest among the three objects.

To provide the designer to adopt the proper shape of the object
for a given application, the time-averaged Nusselt number of the
cavity is correlated with the rotational Reynolds number and
shape of the object of the form

(Nug) =a ReP (14)

The constants a and b in Eq. (14) for the three objects are tabu-
lated in Table 2.

5 Conclusions

In relation to the periodic flow, the important conclusions of
this study are as follows. For noncircular objects, dynamic recir-
culating vortices at the four corners of the cavity are formed. The
instantaneous identical shape of the vortices for the cases of the
rotating circle and square is compromised for the case of a tri-
angle. For low Reynolds numbers, the vortices exhibit marked
time-dependent spatial growth and decay. A distinct channeling
effect is offered by the square and triangle where the vertices of
these objects come in close proximity of the side walls. These
observations were verified through comparison of the simulations
against measured P1V data collected in a transparent model of the
system.

For both insulated and isothermal rotating objects with high Re,
surface-averaged Nusselt numbers suggest that due to the onset of
the Taylor instabilities, quasiperiodic behavior is exhibited with
the dominant period of oscillations being equal to 1/N of 7
=2/ w (N=4 and 3 for square and triangle, respectively). High-
frequency oscillations are also observed for these cases. For
smaller Reynolds numbers, periodicity of the system oscillating
with a period of 1/N of 7 is clearly observed.

By comparing the time-averaged Nusselt numbers of the system
for both insulated and isothermal objects, it is concluded that for
high Re cases, heat transfer is independent of the shape of the
object. However, as the hydraulic diameter of the object is low-
ered (i.e., bigger objects), the triangle and the circle give rise to
the highest and lowest heat transfers, respectively. Periodic chan-
neling and its high intensity for a triangle are identified as the
cause of the observed enhancement.
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Nomenclature
Dy, = hydraulic diameter, defined by Egs. (2)—(5)
E = instantaneous surface-averaged Nusselt number
(Nu) = time- and surface-averaged Nusselt number
Re = Reynolds number, defined as pDw/ u
Ta = Taylor number, defined as
Rp?(0.5H-R)3w?/ u?

Greek Symbol
o = angular velocity, s™

References

[1] Shi, X., and Khodadadi, J. M., 2002, “Laminar Fluid Flow and Heat Transfer
in a Lid-Driven Cavity Due to a Thin Fin,” ASME J. Heat Transfer, 124(6),
pp. 1056-1063.

[2] shi, X., and Khodadadi, J. M., 2003, “Laminar Natural Convection Heat
Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot
Wall,” ASME J. Heat Transfer, 125(4), pp. 624-634.

[3] Saeidi, S. M., and Khodadadi, J. M., 2006, “Forced Convection in a Square
Cavity With Inlet and Outlet Ports,” Int. J. Heat Mass Transfer, 49(11-12), pp.
1896-1906.

[4] Lewis, E., 1979, “Steady Flow Between a Rotating Circular Cylinder and
Fixed Square Cylinder,” J. Fluid Mech., 95(3), pp. 497-513.

Journal of Heat Transfer

[5] Hellou, M., and Coutanceau, M., 1992, “Cellular Stokes Flow Induced by
Rotation of a Cylinder in a Closed Channel,” J. Fluid Mech., 236, pp. 557—
577.

[6] Hills, C. P., 2002, “Flow Patterns in a Two-Roll Mill,” Q. J. Mech. Appl.
Math., 55(2), pp. 273-296.

[7] Kimura, T., Takeuchi, M., and Miyagawa, K., 1995, “Effects of Inner Rotating
Horizontal Cylinder on Heat Transfer in a Differentially Heated Enclosure,”
Heat Transfer-Jpn. Res., 24(6), pp. 504-516.

[8] Escudier, M. P., Olivieira, P. J., and Pinho, F. T., 2002, “Fully Developed
Laminar Flow of Purely Viscous Non-Newtonian Liquids Through Annuli,
Including the Effects of Eccentricity and Inner-Cylinder Rotation,” Int. J. Heat
Fluid Flow, 23(1), pp. 52-73.

[9] White, F. M., 1991, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York, p.
368.

[10] Middleman, S., 1997, An Introduction to Fluid Dynamics: Principles of Analy-
sis and Design, Wiley, New York, Chap. 10.

[11] Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere,
Washington, DC.

[12] FLUENT Inc., 2004, FLuenT User’s Guide, Version 6.2.

[13] Behr, M., and Tezduyar, T., 1999, “The Shear-Slip Mesh Update Method,”
Comput. Methods Appl. Mech. Eng., 174(3-4), pp. 261-274.

[14] Tai, C. H., Zhao, Y., and Liew, K. M., 2005, “Parallel Computation of Un-
steady Incompressible Viscous Flows Around Moving Rigid Bodies Using an
Immersed Object Method With Overlapping Grids,” J. Comput. Phys., 207(1),
pp. 151-172.

[15] Moffatt, H. K., 1964, “Viscous Eddies Near A Sharp Corner,” Arch. Mech.
Stosow., 2, pp. 365-372.

NOVEMBER 2009, Vol. 131 / 111701-11



James Sucec

Department of Mechanical Engineering,
University of Maine,

Orono, ME 04469-5711

An Integral Solution for Heat
Transfer in Accelerating Turbulent
Boundary Layers

An equilibrium thermal wake strength parameter is developed for a two-dimensional
turbulent boundary layer flow and is then used in the combined thermal law of the wall
and the wake to give an approximate temperature profile to insert into the integral form
of the thermal energy equation. After the solution of the integral x momentum equation,
the integral thermal energy equation is solved for the local Stanton number as a function
of position x for accelerating turbulent boundary layers. A simple temperature distribu-
tion in the thermal ““‘superlayer” is part of the present modeling. The analysis includes a
dependence of the hydrodynamic and thermal wake strengths on the momentum thickness
and enthalpy thickness Reynolds numbers, respectively. An approximate dependence of
the turbulent Prandtl number, in the “log™ region, on the strength of the favorable
pressure gradient is proposed and incorporated into the solution. The resultant solution
for the Stanton number distribution in accelerated turbulent flows is compared with
experimental data in the literature. A comparison of the present predictions is also made
to a finite difference solution, which uses the turbulent kinetic energy—turbulent dissipa-
tion model of turbulence, for a few cases of accelerating flows.
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1 Introduction

Heat transfer to turbulent boundary layers subject to a favorable
pressure gradient, an accelerating flow, occurs naturally in gas
turbine blades and vanes and in nozzles. Extensive experimental
data in moderately and in strongly accelerated turbulent boundary
layers is available in Refs. [1-3]. Earlier attempts to predict the
Stanton number distribution in accelerating turbulent boundary
layers include the k- e finite difference solution by Jones and
Launder [4] and a simpler integral approach by Sucec and Lu [5].
A more recent work [6] used temperature scalings from similarity
analysis and a near asymptotic method, along with a number of
constants determined from experimental data, to develop a de-
tailed composite temperature distribution across the entire bound-
ary layer for zero and adverse pressure gradients. This was then
used to solve the integral thermal energy equation for the local
Stanton number, but only in a zero pressure gradient flow.

In the present work, the equilibrium thermal wake strength pa-
rameter i is found as a function of the Clauser parameter g and
the turbulent Prandtl number in the log region Pr; by using the
earlier work of So [7]. Details of the procedure are given in Ref.
[8]. The dependence of the velocity and thermal wake strengths
Teq and g ON the momentum thickness and enthalpy thickness
Reynolds numbers is the one used in an earlier work for zero and
adverse pressure gradients [9]. The proposed dependence of the
turbulent Prandtl number in the log region on the pressure gradi-
ent draws heavily on the work of Blackwell [10]. As part of the
present modeling, a simple linear temperature distribution is em-
ployed as the approximating sequence in the thermal superlayer
0<y < é. After these effects are incorporated, the velocity and
thermal laws of the wall and wake, together with the velocity and
temperature profiles in the thermal superlayer, when it occurs, are
used to solve the integral x-momentum equation for needed quan-
tities, such as C¢/2, &', etc., and then the integral thermal energy
equation is solved for é}* (x), which leads to St,. The predicted
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Stanton numbers are then compared with experimental data for a
large number of cases and also to the predictions of Jones and
Launder [4] for a few cases.

2 Analysis

The earlier fundamental work of So [7] was instrumental in
enabling us to develop an expression for the equilibrium thermal
wake strength parameter g as a function of g and of the turbu-
lent Prandtl number Pr;. So solved for the effect of pressure gra-
dient on heat transfer in constant property, turbulent, equilibrium,
planar two-dimensional boundary layers, which is the thermal
counterpart of the hydrodynamic problem solved earlier by Mellor
and Gibson [11]. So’s work was the base needed to develop
Teq (B, Pry) for favorable pressure gradients 8<<0 using proce-
dures similar to those explained in Ref. [8]. The resultant expres-
sion for i, is given in graphical form as in Fig. 1.

2.1 Integral Equation and Profiles. The integral form of the
low speed constant property thermal energy equation was derived
and integrated for the case of specified surface heat flux q,. The
result, in inner variables, is given as follows:

& ux) "
f B B
0 VqW(X) Xg
U, (Xo) [ %
m Yo U+(T; _ T+)dy+ (1)
u*(X)dw(X) J
The velocity and temperature profiles needed in Eq. (1) are as

follows, namely, the combined law of wall and wake for velocity
and temperature.

s L g 270 (v_*)z_ (y_*ﬂ ‘e
u —Klny +B+ " [3 5 2 5/ | o<y'=¢
2)

ut=ul=1/NCy2 for yt> ¢

With T*=(T,,—T)pC,u*/qy, the temperature profile used in Eq.
(1) is the combined thermal law of wall and wake, namely, for
5=,
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Before Eq. (1) can be solved for the general case, the dependence
of the wake strengths, 7 (x) and 7 (x), on the momentum and
enthalpy thickness Reynolds numbers are needed. Also, the turbu-
lent Prandtl number and the temperature profile in the thermal
superlayer must be modeled.

2.2 Wake Strength Expressions. These come from Ref. [9]
where nonaccelerating flows were dealt with. The equilibrium ve-
locity wake strength ey is from Ref. [12] and is shown next.

B=~0.5+0.767, + 0.4275, (4)

The dependence of 7 on , and the momentum thickness Rey-
nolds number Re, is from Ref. [13].

m=0 0=Re,<425

7= o[ 1 - exp(— 0.243\Z, - 0.298Z)] 425 < Re, < 15,000
(5)

Z,=Re, 4251

o approaches ., asymptotically as Re, approaches about 6000.
The dependence of m; on e, and the enthalpy thickness Rey-
nolds number Re, resulted from curve fits to a numerical solution
by Fridman [14] and are given as follows:

M = Teg 0.000477 Re,], 0 < Rey <348

M = Teq[ 0.065 + 0.00029 Re, ], 348 < Rey <1000  (6)

= Teq[ 1 — €Xp(~ 0.00044109 Re,)],  Rey > 1000

m approaches i as Re, approaches about 11,000. A more com-
plete discussion of details associated with Egs. (4)—(6) is available
in Ref. [9].

2.3 Modeling of Turbulent Prandtl Number. There is some
evidence that the turbulent Prandtl number in the log region in-
creases in an accelerating flow, one with a favorable pressure gra-
dient 8<<0. This is discussed in Ref. [15] and limited experimen-
tal evidence is shown in Fig. 6.10 of Ref. [10], Figs. 4.2 and 4.4 of
Ref. [2] and in Fig. 8 of Ref. [16]. An equation for the turbulent
Prandtl number in the log region, developed by Blackwell [10],
gives the correct qualitative trend of Pr; with pressure gradient. A

version of it, modified to give Pr;=0.85 at K=0, is used here as a
conservative approximation to Pr, because of the shortage of Pr;
data in accelerating flows.

Pr,=0.7556[ y + 2%
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y=1000K Re,/(H - 1) @)

where K is the pressure gradient parameter used to characterize

accelerating flows, Kz(v/ug)(dus/dx), H=6°/6, the usual
“shape” factor, and Re, is the momentum thickness Reynolds
number.

2.4 The Thermal Superlayer. Perhaps the most distinctive
characteristic of an accelerating turbulent boundary layer is the
depression of Stanton number values, below what might be ex-
pected, due to the suppression of turbulence caused by the accel-

eration when K values are large enough. As has been pointed out

by many sources, if a value of K greater than about (2.5-3)
% 107® is maintained over a long enough streamwise distance,
retransition to a laminar flow is theoretically possible. Another
less obvious state often found in accelerating boundary layers is
the occurrence of long regimes of flow where the thermal bound-
ary layer thickness & is larger than the local hydrodynamic
boundary layer thickness . The layer of thickness &-& when &
> & has been termed the “thermal superlayer” in Ref. [17]. The
existence of such a layer was shown to be possible by Kays et al.
[18]. This layer has essentially zero eddy conductivity and is a
layer of molecular conduction. The x component of velocity in the
layer is the local free stream velocity, ug (x). It remains to model
the temperature distribution across the thermal superlayer. A very
simple linear in y temperature distribution was chosen. Cubic, in
y, and a quartic, in y, temperature profiles were also investigated,
but since the average difference in predicted St, values differed
only by about 1.5%, the simple linear profile was used in the
predictions and is shown next.

T =Tu+b(y" - &), for & > &' (8)
where b is dependent on §*, Pr,, and Pr.

2.5 Solution of the Integral Equations. In order to solve for
the local Stanton number as a function of surface position X, the
integral form of the x momentum equation and the thermal energy
equation must be solved for §* (x) and & (x), respectively. In this
constant property solution, the x momentum equation is solved
first by using, as the velocity profile, the combined law of wall
and wake given by Eq. (2). The solution procedure was described
in an earlier work [12]. In the present work, the starting hydrody-
namic condition was modeled as follows. At the location of the
boundary layer “trips,” the mixing process caused by the trips
leads to the start of a new turbulent boundary layer with §"=0.
Very small nonzero values of & were actually used to avoid nu-
merical problems. Another way of modeling the starting condition
is to use laminar flow up to the boundary layer trips after which
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the flow is turbulent and say that the momentum thickness @ is
continuous at the trip, as suggested in Ref. [19], for natural tran-
sition. This led to results very close to those which used §*=0 at
the trips, less than 0.5% difference, on the average. However,
since the transition at a trip is not a natural transition, the §*=0
modeling was employed in the predictions.

The integral thermal energy equation (Eq. (1)) was solved next,
now that the hydrodynamic solution for 6" and u* are available.
The velocity profile (Eq. (2)) and the temperature profiles (Eq. (3)
and, when 5t+> &%, Eq. (8)) were inserted into Eq. (1) and the
integrations were performed analytically. The resultant nonlinear
equation was solved by Newton’s method using the same small
lattice spacing in x (Ax) as was used in the hydrodynamic solu-
tion. The initial or starting condition, for the solution of the ther-
mal boundary layer for 5: (x) is described next.

At the x location of the start of heating, 5;':0 or, equivalently,
the local Stanton number was chosen to be very large to simulate
St, of oo at this point. To insure that the downstream solution was
independent of the starting value of Sty used, runs were made with
different starting values and it was found that a change in starting
value from St,=0.035 to 0.010 caused a maximum change of
0.15% in the predicted downstream values of St,.

2.6 Stanton Number Solution. With the solution of Eq. (1)
for & (x) known, the local Stanton number is formed by setting
y*=6 to give T, from the temperature profiles, Eq. (3) when
8 <" or Eq. (8) for & > & The definition of T{ leads to the
following heat transfer relations:

/Cy2 _Pr, Pr
L Ty, &+C(P+2—m for & <& ©
Sty K K
VCy/2 _ Pr, Pry Prt( 2 )
s n st CPr) + 22—t + b -1
St K Fr e

(10)
for & >6

Lattice refinement studies were carried out to be sure that the
predicted values of St, were independent of the lattice size Ax
used in the calculations. In a typical case, cutting Ax in half
caused a maximum change in the predicted St, values of 0.018%
when Ax=0.00065 m was used. The expression and values
needed in Egs. (9) and (10) were K=0.41, Pr=0.71, B=5.0 with
C; (Pr)=13.2 Pr-5.34, coming from Ref. [19].

3 Results and Discussion

The relationship for i as a function of the Clauser parameter
B and Pry is show_n graphically in Fig. 1 for accelerating turbulent

boundary layers K> 0. This was developed from the work of So
[7] on equilibrium thermal boundary layers, as previously men-
tioned. Qualitatively, e, decreases as S increases and as Pry in-
creases. Figure 1 does not show this, but, in fact, e, decreases
almost linearly with increasing Pr;.

Comparison of present predictions of St, with the experimental
data of several investigators is shown in Fig. 2. Run 1, in Fig.

2(a), is a zero pressure gradient (K=0) baseline case with the
solid curve being the present predictions and the experimental
data are from Ref. [1] with 7.6 X 10°<Re, < 2.2 X 108, The agree-
ment with the data seems to be adequate. The present method was
used earlier in Ref. [9] with many different cases of zero pressure
gradient for isothermal and constant flux surfaces, both with and
without unheated starting lengths, and the agreement with data
from three different investigators was good.

Figure 2(b) displays experimental data (Run F-3) taken by Fi-
letti and reported in Ref. [1]. The data reductions, which led to the
Stanton numbers in Ref. [1], used as the driving potential differ-
ence AT, which is the wall temperature minus the freestream stag-
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nation temperature. Some of the data just prior to the end of the
acceleration was taken at high enough freestream velocity to
cause appreciable viscous dissipation effects. Hence, the driving
potential difference between wall and fluid that should be used is
the wall temperature minus the adiabatic wall temperature. When
this was done, in the present work, it led to slightly higher than
reported experimental St, values at some of the data points. How-
ever, the maximum correction to the data only raised St, by 1.1%.
In Run F-3, the boundary layer trip was located at about X
=1.17, Re, varied between 4.7 X 10° and 4.8 X 10%, the accelera-
tion region was between X=0.65 and about 0.90 with a maximum

acceleration parameter K equal to 2.5 10%, a very strong accel-
eration. The effective location of the step change in surface heat-
ing was taken to be X=0.33. Predictions, the solid curve, are
pretty good except for a region just after the start of acceleration
where the characteristic drop in St, due to the acceleration is seen.
This is due to the “lag” in the fluid flow in adjusting to the some-
what abrupt change in freestream velocity. The fluid flow and
temperature fields in the fluid do not instantaneously change from
the ones they had in the previous constant freestream velocity

flow to those eventually appropriate to a more or less constant K
flow. The integral predictions, on the other hand, do react right

away to the abrupt change in K. It will be seen later that even the
k- e finite difference procedures have difficulty in this region. It
can be seen from the figure that the present predictions do very
well in the “recovery” region at, and after, the acceleration ends in
the neighborhood of X>0.90. This tends to agree with the experi-
mental observations in Ref. [20], where it was noted that there
was a substantial lag in the overall response of the boundary layer
at the beginning of acceleration and a considerably smaller lag at
the end of acceleration.

The experimental Stanton number data in Fig. 2(c) come from
Ref. [2], where the boundary layer trip was at the start of the test
section for Run 091069-1. The local length Reynolds number Re,

varied from about 8.2 X 10* to 3.6 X 105, and K was held essen-
tially constant at 2 < 1076 from about X=0.25 to about 0.60. This
was a strong acceleration, which started somewhat gradually, but
ended quite abruptly. The present predictions follow the data very
well in the entire acceleration region and do fairly well in the long
recovery region (X>0.60).

The data in Thielbahr et al. [3], is shown in Fig. 2(d). his Run
072968-1, where Re, ranged from 1.08 X 10° to 2.8 X 108, The
data are for a moderately strong acceleration, the nominal value of

K was 1.45 X 10°, which started a gradual rise at X=0.18 and ends
pretty abruptly at X=0.62. The predicted St, values follow about
the same trends as in Run 091069-1 of Kearney, good agreement
with data in the acceleration region and reasonably good in the
recovery region X>0.62.

Figure 3 continues comparison between experimental St, data
and the present predictions.

In Fig. 3(a), the data for Run 070869-1 is from Kearney, et al.
[2] for Reynolds numbers, Re,, varying from 6.5x10* to 2.8

X 108 with very strong acceleration, K=2.5X 1078, occurring be-
tween X=0.28 and 0.43. The solid line, the predicted values, fol-
lows the data in the acceleration regions fairly well, though it
overpredicts the St, values near the end of that region and is seen
to do very well in the long recovery region X>0.43.

Run F-2 data in Fig. 3(b) is from Ref. [1], (3.9 X 10°<Re,

<4x10%) with K increasing, fairly abruptly, from 0 to a maxi-
mum value of 3 1078 at X=0.65 followed by a gradual reduction
to 0 at X=0.94. Surface heating began at X=0.33. The predictions
are good in the flat plate region before the acceleration, but are not
that good at the beginning of the acceleration because of the lag in
response of the data. However, when the lag region has passed,
the predictions in that section of the acceleration region are good

again. There is a much smaller lag in the decreasing K region than
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091069-1 data [2]: L=1.83 m (6.0 ft)
ft).

there was in the increasing K region due to the much more gradual

decrease in K to 0 compared with its abrupt increase from K=0.

Agreement of predictions with data is again good for X > 0.90.
Figure 3(c) contains some more data from Ref. [2], namely,

Run 092469-1, (6.4 X 10*<Re,<2.7 X 106). The acceleration to

K=2.5x107® starts out at about X=0.48 and ends around 0.89.
The predictions are reasonably good in the acceleration and recov-
ery r_egions. Surprisingly, the predicted St, values are poorest in

the K=0, flat plate region, X<0.48. The reason for this is not
apparent since other flat plate initial region predictions, such as in
Runs 1, F-3, F-2, and numerous other cases in Ref. [9], have been
good to very good.

In Fig. 4 it is shown not only the comparison of present predic-
tions to experimental data of three runs of Ref. [1], but also the
predictions of Jones and Launder [4]. Their predictions came from
a finite difference solution of the governing partial differential
equations using a k— e (turbulent kinetic energy and dissipation)
turbulence model. Figure 4(a) shows the data from Run F-3, pre-
viously discussed, compared with the solution of Jones and Laun-
der [4], represented by the dashed curve and to the present solu-
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. Run 072968-1 data [3]: L=2.29 m (7.5

tion, the solid curve. The present method is closer to the data in
most of the strong acceleration region, between X=0.65 and 0.90,
and in the recovery region X>0.90. It is seen that the finite dif-
ference solution also responds to the beginning of the acceleration
before the data does, due to the lag in the physical process, but
does not drop as abruptly or as low as the present integral method.

The experimental data in Fig. 4(b) is from Run 42 (3.3 10°
<Re,<3.4%108). This is one of the more challenging data sets

in Ref. [1], with a long initial constant K=0 region to about X
=0.65 followed by a rise to K=4.0 X 107 at X=0.68 continuing to

0.75 where K decreases slightly to 3.6 X 107® before increasing
again to 4.0x107% followed by a decrease to 0.0 between X
=0.83 and X=0.95. Thus, this is a case of a very strongly accel-
erated flow. The present integral prediction comes closer to fol-
lowing the data in most of the initial flat plate region and most of
the acceleration region than do the predictions of Jones and Laun-
der [4]. Their predictions are somewhat better just after the start of

acceleration and just after the decrease in K toward 0.0 while the
present results are a little better in the recovery zone X>0.95.
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This Run 42 has also been predicted by El-Hawary and Nicoll
[21], who used a finite difference solution with a modified one
equation model of turbulence. As can be seen from their Fig. 8,
(their “flow 14" is Run 42) their predictions are better than those
of Jones and Launder (also shown in their Fig. 8) in the initial flat
plate region, about the same in the acceleration region, but are far
below the data and the predictions of Jones and Launder in the

region for X>0.87 where K decreases to zero and remains at zero.
Overall, the present predictions are quite a bit better at tracking
the data than those in [21]. They also show, in their Fig. 8, the
predictions of Kreskovsky et al. [22], who also used a finite dif-
ference procedure with a turbulence kinetic energy equation. Their
predictions for Run 42, however, very greatly underestimate the

data everywhere except in the initial region of K=0.0, the flat
plate region.
Figure 4(c) has St, data from Run 10 (7.1 X 10°<Re,<6.4

X 10%) of Ref. [1]. In this run the acceleration parameter K in-
creased for 0.0 at X=0.81, reached a maximum value of 3.6
X 1078 at X=0.88 then immediately decreased from X=0.88 to 0.0
at about X=0.95. As was discussed in connection with Run F-3 in
Fig. 2(b), slight corrections were made to some of the measured
St, data to account for viscous dissipation. The maximum change
in their St, values was only about 2.2%. Neither the present pre-
dictions nor those of Jones and Launder [4] are able to follow the
lowest data points, which lag both predictions near the end of the
acceleration region. Overall, though, the predictions of Jones and
Launder [4] are better than those of the present method for Run 10
in Fig. 4(c).

Looking at the results in Figs. 4(a)-4(c), it seems as if some of
the statements made in Ref. [21] still ring true, namely, that pre-

Journal of Heat Transfer

092469-1, data [2]: L=2.29 m (7.5 ft).

dictions of highly accelerating flows, generally speaking, are not
as accurate as those for flows which are not strongly accelerated.
These flows are so complex that even finite difference methods
cannot predict these flows as accurately as one might wish. As
more evidence of this, Shishov [23] used a modified k- e turbu-
lence model to predict the cross-stream distribution of turbulent
heat flux for three turbulent boundary layers, one had a zero pres-
sure gradient, another was a strongly retarded flow (adverse pres-
sure gradient), and the last was an accelerated flow. He found
good agreement of his predictions with data for both the zero
pressure gradient and the adverse pressure gradient flows, but not
for the accelerated boundary layer. Hence another modification to
his turbulence model was made specifically for accelerated flow
which improved his predictions, but they still were not as good as
for the zero and adverse pressure gradient flows as is seen in his
Fig. 19.

The results of a sensitivity analysis are shown in Fig. 5. The
experimental data is for Run 25 of Ref. [1], with Re, ranging from

4% 10° to 3.9 X 10% with K remaining approximately constant at
0.75x 107 from X=0.32 to about 0.933 and then decreasing to
about 0.0 at X=1.0. What is being studied here is how much the
effect of three different effective locations of the start of heating
has on the predicted downstream Stanton numbers. This was done
because the experimental attempt at a “step” change to begin heat-
ing results, in actuality, in a range of X=0.3015-0.3352 for the
step change to take place. Thus, calculations were carried out with
the following three different effective start of heating locations:
X=0.3015, 0.3245, and 0.3352, Runs 25a, 25, and 25b, respec-
tively, in Fig. 5. As is evident from the figure, there is little dif-
ference in the predicted St, values for Runs 25b and 25, which

NOVEMBER 2009, Vol. 131 / 111702-5



4
3.5 1
3 -
& 254
) '2
8 RUN 10
© 1590 | L para
19 |= = JONES and LAUNDER A,A
0.5 -
0 T T T T T T T T T T
] 0.1 0.2
45
4 4
3.5 1
Z 3
o 2.5
S 24
e 45 RUN 42
74 ® DATA
= = JONES and LAUNDER
0.5 1
0 T T T T T T T T T T
0 01 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1 1.1
X
4.5
4 -
3.5 1
X3
 2.54
=4 24 RUN F-3
o
~ 154 ® DATA
1 = = JONES and
0.5 - LAUNDER
0 T L§ 1 T L§ 1 T T 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 1.1
X

Fig. 4 Comparison of present predictions and those of Jones and Launder [4] with data ().
Runs 10, 42, and F-3 data [1]: L=1.83 m (6.0 ft).

have essentially merged already at X=0.360. Even the calculation
using a somewhat extreme choice for the start of heating (X
=0.3015) essentially coincides with the other two calculations by
about X=0.42. Therefore, we find that the predictions certainly are
not overly sensitive to the precise choice of the beginning of heat-
ing. The predictions for this case, at first, somewhat overpredict

the data and underpredict the data in much of the acceleration
region, but then shows good agreement with the data for the re-
gion, near the end, X>0.93, where K is being reduced to almost
zero.

Additional comparisons of predictions with Stanton number
data are given by Fig. 6. Figure 6(a) shows Run 100269-1 of

——RUN 25
® DATA
— =RUN 25A
===-RUN 25B

1000 STx

01 02 03 04

05 06 07 08 09

X

1.1

Fig. 5 Comparison of predictions with data () for different locations of the
start of calculation. Run 25 data [1]: L=1.83 m (6.0 ft).
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Ref. [2], (4.4X10°<Re,<2.7 X 10%) which has a long unheated
starting length with heating beginning at X=0.44 and a very

strong acceleration K=2.5% 1075, from X=0.70 to about 0.84. K
starts increasing at X=0.55 to 2.5x 107® and decreases back to
about zero around X=0.93. While the agreement between predic-
tions and data is very good in the initial flat plate region and the
recovery region, the present method overpredicts St in the later
stages of acceleration.

Figure 6(b) contains data from Run F-4 of Ref. [1]; Re, varies
from about 5.4 X 10° to 5.45 X 108 while the acceleration param-

eter K ramps up, rather abruptly, from 0.0 to a maximum value of
2.2 X 107% before it starts decreasing, gradually, from this value at
0.83 to 0.0 at X=0.92. As with some previous runs, some of the
experimental St, data values were given a small correction, in the
present work, to account, more rigorously, for viscous dissipation
effects. The maximum correction in their St, data values was only
1.6%. The present integral method’s predictions do reasonably
well everywhere except just after the start of the acceleration,

which, due to the rapid increase in K in the very short distance
discussed above, causes a significant lag in the physical processes
causing the data to be higher than the predictions.

Data shown in Fig. 6(c) also comes from Ref. [1] (Run 41,
where 6.5 10°<Re, < 6.6 < 10°). Acceleration begins at about

X=0.62 and ends close to 0.90 with a maximum K=1.84x 107,
Here again corrections were made to some of the data for viscous
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X

0.7 1.1

F-4 data[1]: L=1.83 m (6.0 ft). Run 100269-1 data

dissipation with the largest correction to St, being 2%. P_redictions
are pretty good in the initial flat plate region where K=0.0 for
X<0.62, also in the region where K is being reduced to 0.0,

0.86<<X<0.90 and in the recovery region where K has returned
to 0.0, for X>0.90. However, the predictions consistently under-
predict the data in the bulk of the acceleration region (0.62 <X
<0.86).

4 Concluding Remarks

Values of the thermal wake strength parameter ., Were calcu-
lated for accelerated equilibrium turbulent boundary layers. These
meq Values depend on the turbulent Prandtl number and the
Clauser pressure gradient parameter and are given in graphical
form. It was found that e, values decrease with both increasing
values of B and increasing values of Pr, for accelerated boundary
layers.

Using the e, Vvalues, predictions of the dependence of the
local Stanton number St, with position X were made using an
integral method. This integral method, which used inner variables
u*, T*, and y*, takes into approximate account the dependence of
the wake strengths 7 and 7, on req and ey and the momentum
thickness and enthalpy thickness Reynolds numbers, respectively.
Also, an approximate procedure to account for the turbulent
Prandtl number’s increase with increasing acceleration parameter
was proposed and used in the calculations.
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Comparison of predicted values of St, with experimental data,
from the literature, were made for a large number of cases ranging
from zero acceleration to mild, moderate, strong, and very strong

accelerations as the acceleration parameter K increased. On the
whole, it seemed as if the comparison of predictions to data was
satisfactory and reasonable for most of the cases. There was dif-
ficulty in making good predictions, for some cases, just after the

start of acceleration when K increased from 0 to a much larger
value in a very short distance in x. This is caused by the lag, in the
response of the hydrodynamic and thermal boundary layers,
which the present integral method fails to exhibit. However, it was
seen that even the k— e two equation models of turbulence, in
finite difference solutions of the governing partial differential
equation, also failed to predict the lag of the actual physical pro-
cesses.

Comparisons of the present integral method predictions with
previous two equation finite difference solutions for a few cases
were made and it was found that the integral method predictions
of St, were better than those of the finite difference methods in
two of the three cases.

Arguments were made for concluding, as others also have pre-
viously, that accurate predictions of strongly accelerated turbulent
boundary layers are quite a bit more difficult than for decelerated
or zero acceleration flows. This is borne out by the present work
in which the predicted St, values are not as good as experienced in
two previous works [8,9], which dealt with zero and adverse pres-
sure gradient turbulent boundary layers.

Nomenclature
b = slope in the temperature profile, Eq. (8)
B = a constant in the velocity profile, Eq. (2)
Ci = 27,/pu?, skin friction coefficient
C, = constant pressure specific heat
C; = Prandtl number function in temperature profile,
Eq. (3)
H &%/ 6 shape factor
i = enthalpy per unit mass
K = von Karman constant, 0.41
K
L

= v/u? (dug/dx)
= reference length
P = local pressure
Pr = molecular Prandtl number
Pr, = turbulent Prandtl number
gw = surface heat flux
Re, = ugx/v, local Reynolds number
Sty = hy/pcyus, local Stanton number
T, Tw, Ts = local, wall, and freestream temperatures,
respectively
T" = (Ty=T)pCpu*/ay
T. = value of T* in freestream

Ts = value of T* at 5

u, ug = Ioca_land freestream x velocity components
7,/ p, friction velocity

u* = u/u* inner velocity

u; = freestream value of u*

X = x/L nondimensional x coordinate

X = space coordinate along surface

Xo = X value at the start of calculations

y = space coordinate normal to surface

y* = yu*/v, inner coordinate

Greek Symbols
B = &(dP/dx)/,, Clauser parameter
v = defined in Eq. (7)
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local thickness of velocity and thermal bound-
ary layer, respectively

= displacement thickness, [ (1-pu/psus)dy
8, & = value of y* at y=5and &

A = local enthalpy thickness,
fSQ(PU/PsUs)[(i - is)/(iw_ is)]dy
6 = local momentum thickness, [§(pu/psus)(1

—u/ug)dy
v = kinematic viscosity
p = mass density
7y = surface shear stress
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Radiative Cooling of a Spherical

In this paper, a nonlinear problem for combined convective and radiative cooling of a
spherical body is considered. This problem represents a strong nonlinearity in both the
governing equation and the boundary condition. Analytic approximations for the solution

of this problem are obtained using the homotopy analysis method and via a polynomial
exponential basis. Also, the effect of the radiation-conduction parameter N,. and the Biot
number Bi for the temperature on the surface of the spherical body is investigated and
discussed. [DOI: 10.1115/1.3154625]
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1 Introduction

Problems of transient heat-conduction in a solid with combined
convective and radiative cooling on the solid surface have many
applications such as glass manufacturing, nuclear reactor thermo-
hydraulics, and aerothermodynamic heating of spaceships and sat-
ellites. The solution for heat-conduction problems, using probabil-
ity methods applied to a plate subjected to simultaneous boundary
convection and radiation, was introduced by Haji-Sheikh and
Sparrow [1]. Crosbie and Viskanta [2] studied transient heating or
cooling of a plate by combined convection and radiation. Davies
[3] discussed the cooling of a plate by combined thermal-radiation
using the heat balance integral technique. Sunden [4,5] handled,
respectively, the problem of transient heat-conduction in a com-
posite slab by a timevarying incident heat-flux, combined with
convective and radiative cooling, and the problem of transient
conduction in a cylindrical-shell with a timevarying incident sur-
face heat-flux and convective and radiative surface cooling.
Parang et al. [6] studied the problem of inward solidification of a
liquid in cylindrical and spherical geometries due to combined
convective and radiative cooling by the regular perturbation
method. Siegel [7] studied transient heat transfer in a semitrans-
parent radiating layer with boundary convection and surface re-
flections. Su [8] investigated the transient radiative cooling of a
spherical body by using improved lumped models. We consider,
here, the problem of combined convective and radiative cooling of
a spherical body. This problem has a strong nonlinearity in both
the governing equation and the boundary condition, and so en-
counters difficulties in obtaining exact solutions. The homotopy
analysis method presented by Liao [9-12] is a powerful tool to
treat such complicated nonlinearity. This method does not depend
on the existence of small or large parameters in the studied prob-
lem such as the perturbation methods [13-17], and, unlike other
methods, such as Lyapunov’s small parameter method [18], the
S-expansion method [19], and the Adomian decomposition
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method [20-23], it has the ability to control convergence for the
obtained solutions. Liao and other authors [24-30] applied this
method in a successful manner to many nonlinear applications in
science and engineering. To show the basic ideas of this method,
let us consider the nonlinear equation

N[g(r,t)]=0 (1)

where N is a nonlinear operator, g is an unknown function, r is a
vector of spatial variables, and t is the time. By means of the
traditional concept of homotopy, Liao [12] constructed the so-
called zero-order deformation equation

(1= a)LL(r,t,q) = go(r,t)] = ahN[(r,t,q)] )

where ge [0,1] is an embedding parameter, L is an auxiliary linear
operator, gq is an initial guess for the unknown function g, and h
is an auxiliary parameter. As q varies from 0 to 1, the solution of
Eq. (2) varies from the initial guess g, to the exact solution g of
the nonlinear equation (1) as follows:

¢(r!t10) = go(r,t), ¢(r,t,1) = g(r!t) (3)

Expanding ¢(r,t,q) in the Taylor series, with respect to g, one has

B(r,t,0) = go(r,t) + >, gn(r,H)Q" (4)
m=1
_1 ¢(rta)
(0= r - (5)

If the parameter h is properly chosen, such that the series (4) is
convergent at q=1, then from Eq. (3)

g(r,) = go(r,t) + >, gn(r,t) (6)
m=1

Differentiating the zero-order deformation equation (2), m times
with respect to g, setting q=0, and finally dividing by m!, we
obtain the mth order deformation equation

LIgm(r,) = XmGm-2(r, )] = hPy(r,t), m=1 7)
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_ 1 INLe(rta)]
i s ®)
_ 0, m=1 9
Xm= 1, m>1 9)

The solutions g,(r,t), where m=1, of Eq. (7) are called the mth
deformations, and can be computed by any symbolic software.
The homotopy analysis method provides a freedom to choose L
and gy, and control the convergence by the aid of the parameter h
to obtain analytic approximations in terms of suitable basis of
functions.

2 Mathematical Formulation

In the problem of combined convective and radiative cooling of
a spherical body, it is assumed that the spherical body is homoge-
neous, isotropic, opaque, and at the time t=0, it is suddenly ex-
posed to a constant fluid temperature T and a constant radiation
sink temperature Tg.

The mathematical model for this problem has the form

JaT 19 JT
r’k(T)—| in r<R and for t>0
P = Z&r[ ()ﬁr] !
(10)
and subject to the conditions
T(r,0)=T; in r=R and at t=0 (11)
JT -
—k(T)E:ht(T—TfHea(T -T) at r=R
and for t>0 (12)
JT
E:O at r=0 and for t>0 (13)

where p (const) is the density, ¢, (const) is the specific heat, T is
the temperature, t is the time, r is the spatial coordinate, k(T) is
the thermal conductivity, R is the radius of the spherical body, T;
is the initial uniform temperature for the spherical body, h; is the
convective heat transfer coefficient, & is the surface emissivity,
and o is the Stefan—Boltzmann constant.

Introducing the concept of the adiabatic surface temperature T,
by the equation

h(To=Tp) +ea(Ty=T$) =0 (14)
we then have
hTi+e0Ts=hT,+eoTy (15)
and Eq. (12) takes the form
- k(T)Z—I =h(T-Ty)+eo(T*-Th) at r=R
and for t>0 (16)
Also, using the dimensionless parameters
0—1, 77=£, T=a—02t, )\=5
T; R R Ko
3
L L

Equations (10)—(13) are transformed to the form

111703-2 / Vol. 131, NOVEMBER 2009

0_1 (9[ (0)—] in <1 and for 7>0
ar 21917 7 7 7
(18)
with the conditions
(7,0 =1 in =1 and at 7=0 (19)
a0 .
—x(e)a—:Bu(e—eawNm(a“—og) at p=1
7
and for 7>0 (20)
a0
—=0 at =0 and for 7>0 (21)
an

where K is a reference thermal conductivity and «y is a reference
thermal diffusivity. The parameters Bi and N,. are known as the
Biot number and the radiation-conduction parameter, respectively.

Considering the case for which the thermal conductivity has a
linear form in the temperature

k=ko[1+DbT], b(const) (22)
we have
bT;
NO) =1+ 6, B="" (23)
0
and Egs. (18)—(21) can be written as
% _ [772(1 ,80)—] in »<1 and for 7>0
772 9 7 T
(24)
with the conditions
#(n0)=1 in =1 and at 7=0 (25)
a0 .
~ 1+ B0 =Bi(0- 6+ Ne(6' - 62)
at =1 and for 7>0 (26)
a0
—=0 at =0 and for 7>0 (27)
an
Finally, by means of the time transformation
§=1-exp(-7) (28)
Egs. (24)-(27) have the form
g0 2 ﬂ[‘?—a] S -a-e
arf anl mo §
(29)
with the conditions
07,0 =1 in =1 and at £=0 (30)
a0 .
~(1+ B0~ =Bi(0-6) + Nee(6' = ) at 7=1, 0<¢=1
i
(31)
a6
—=0 at 7=0, 0<é=1 (32)
an

Equations (29)—(32) represent strong nonlinearity, not only in the
governing equation (29), but also in the boundary condition (31).
Liao et al. [31] applied the homotopy analysis method to give
analytic approximations to the problems (29)—(32), via a polyno-
mial basis. Here, we apply the same method to obtain analytic
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approximations to Egs. (29)—(32), but via a polynomial exponen-
tial basis.

3 Application of the Homotopy Analysis Method

Applying the homotopy analysis method on Egs. (29)—(32), we
use the basis

7™, nm=0 (33)
Also, we express the solution by the rule of expression
0(n,) = EAmoe ”+EEA 'em? (34)

m=0 n=2

where Apo and A, are functions of the dimensionless time &.
Viewing Eqgs. (29)-(34), we chose an initial approximation and
an auxiliary linear operator for the governing Eq. (29) as follows:

(7, =1+ (6,- 1)é= &1 - &) re” (35)
- ;e-n[i _ i] )
() Lot an
Also, we choose the following auxiliary linear operator, for the
nonlinear boundary condition (31), at =1 and 0<¢=1:

J .
L,= (9—77 + Bi (37)
We construct the so-called zero-order deformation equation
(L-a)Lyfd(7.&9) - 6(7,6]=ahNi[p(7.,0)]  (38)
with the conditions
¢(7,0,0)=1 in »=1 and at ¢=0 (39)
(1 - q)LoLd(7,6,9) = 6o(7,€)] = ah N[ (7, €,0)],
n=1, 0<é¢=1 (40)
9nED 5 o p=0, 0<=1 (41)

an

where h; and h, are auxiliary parameters, and q is an embedding
parameter from 0 to 1. As q varies from 0 to 1, the solution of
Egs. (38)—(41) varies from the initial approximation to the exact
solution of Egs. (29)—(32).

Thus we have

¢(7]1 §,0) = 60(771 g)l ¢(7]1 gv l) = 0(7’1 ‘f) (42)

The nonlinear operators N; and N, in Egs. (38) and (40) are de-
fined as

(7,69
a7

+B¢(§)

PP(n,¢,
+B¢(77,§,Q)%
¢<n,§q) [fﬁﬁ(ném]z

tB dJ

n
L 20¢(n.é0) (1- §)0¢(n.§OI)
n  dn 23

¢>(77,§ Q)

1[¢(7]1§ Q)] =

(43)

Nolé(n, & a)]=[1+ Be(n.&a)]—— +Bilp(#,£0) - 62

+Ne ¢ (n.6,0) - 02] at p=10<é=<1

(44)
By Taylor’s series at q=0, we have
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(9, £0) = $(7,£0) + Eemw,e)q (45)
m=1
where
1 f?m</5(77,§q)
Om = T om 46
(9= el I (46)

If the parameters hy and h, are properly chosen, such that the
series (45) converges at q=1, then from Eq. (42)

07,6 = Oo(7,0) + >, On(7,6) (47)

m=1
Differentiating the zero-order deformation in Egs. (38)-(41), m

times with respect to g, setting q=0, and finally dividing by m!,
we obtain the mth order deformation equation

Li[ 60n(7:€) = XmOn-1(7, &) 1= Pr(7,é) (48)
with the conditions
On(7,0)=0 in x=1 and at £=0 (49)
Lz[ﬁm(ﬂ: f) - Xmﬁm—l(ﬂv f)] = hZQm(g) at =1, 0<é=1
(50)
M:O at =0, 0<¢=1 (51)
an
where
(920m 1(77| f) &Zam—l—n(nr g)
P =—"7—"+B2 (n)——
K (97;2 % K s
+ £ ,32 0( g)ﬁem 1 n(77:§)
n=0
n IBE ﬁ@n(n, £) &em—l—n(n: £) + g&@m_l(ﬂ, g) e
=0 97 an n  dn
_ (9‘9m—1(7lx§)
f)—ag (52)
s (7, Or1-n(7, .
Q= 1L, BE 1,071 g g0
7 an
m-1 n
+Npe (E 0,—<1,§)9n_,-(1,§>>
n=0 \ j=0
m-1-n
X( > Hj(lvg)em—l—n—j(le))
=0
-Bi(l1- Xm)aa - Nrc(l - Xm)eg at 7=1 (53)

The deformations 6,,(7, ), where m=1, for Egs. (48)—(51) can
be obtained by a symbolic software such as MATHEMATICA and can
be taken as

2m+1 2m+1

On(nO= 2, > albinfle” (54)

=0 j=0

where al; are functions of ¢&.
For a best choice of h; and h,, the mth order approximation for
the solution of Egs. (29)—(32) is then
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Fig. 1 The h-curve of 6'=3%6(n,£)! dn|,~ for £=0.5, =0, Bi
=1, N¢=0, and 6,=0

m 2m+1 2m+1

0(n,&) = O(m,6) + >, >, >, abirflel”

m=1 i=0 j=0

(55)

The corresponding mth order approximations for the solution of
Eqs. (24)—(27) can be obtained via the relation (28). The best
values of the parameters h; and h,, which control the convergence
of the approximation (55) can be deduced by plotting the h-curve
of ¢'=6(n,&)/d7?|,= for fixed values of ¢ and reasonable
choices of the parameters. This curve takes a horizontal line
through the position of convergence.

4 Results of the Application

On applying the homotopy analysis method for Egs. (29)-(32),
it is essential that the solution series (47) is convergent. This
method gives us freedom to choose the values of the auxiliary
parameters h, and h,, which provide us with an easy way to adjust
and control the convergence region for the obtained approxima-
tions. For the application up to the 30th order approximation, we
choose simply h;=h,=h. Plotting the h-curve of @"
=07, &)/ 9|, for the values £=0.5, B=0, Bi=1, N;=0, and
0,=0, we choose h=-0.3 as indicated in Fig. 1. Figure 2 indicates
also the h-curve of 6"=d26(7,&)/dn?|,=, but for £=05, B=1,
Bi=0.5, N,.=0.5, and 6,=0.5, the appropriate choice for this case
is h=-0.2. Figure 3 investigates the 30th order approximation
analytic homotopy solution for the temperature 6 as a function of
the dimensionless time 7, and at the boundary %=1 for the para-
metric values 8=0, Bi=1, N,=0, 6,=0, and h=-0.3. Figure 4
views a comparison between the homotopy solution in Fig. 3 and
the exact solution for 6, which is possible for this case (B
=0, Bi=1, N,=0, 6,=0), in which Egs. (29)-(32) are linear.
This comparison shows that the 30th order homotopy solution, for
this case, agrees with the exact solution for the dimensionless time
0.35= 7<%, which tests the validation of the application of the

-1 -0.8

Fig. 2 The h-curve of 6'=3%6(», &)/ dn|,= for £=0.5, B=1, Bi
=0.5, N,.=0.5, and 6,=0.5
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0.5 1 1.5 2

Fig. 3 The 30th order analytic homotopy solution @ (as a func-
tion of 7) at »=1, and for B=0, Bi=1, N,.=0, 6,=0, and h=-0.3

homotopy analysis method for the nonlinear case. Figure 5 de-
scribes the temporal variations in the temperature 6 on the surface
of the spherical body, at the boundary »=1 for different values of
the Biot number Bi (Bi=0.5,1,2) and the values 8=1, N,.=0,
0,=0, and h=-0.3. This figure shows that the temperature de-
creases as the Biot number enlarges, and also, decays more
quickly for large values of the Biot number. Figure 6 also de-
scribes the temporal variations in the temperature 6 on the surface
of the spherical body, at the boundary =1 for different values of
the radiation-conduction parameter N(N,.=0.25,0.5) and the
values B=1, Bi=0.5, ,=0.5, and h=-0.2, and also shows that the
temperature decreases as the radiation-conduction enlarges. Figure
7 views the spatial variations in the temperature 6 of the spherical
body through different values of 7(7=0.05,0.10,0.20,
0.35,0.50,1), for the Biot number Bi=1, and for 8=1, N,.=0,
0,=0, and h=-0.3. Figure 8 also views the spatial variations in

0.8
0.6
0.4}

0.2

T

0.5 1 1.5 2
Fig. 4 A comparison between the 30th order analytic homo-
topy solution (thin line) and the exact solution (solid line) at
n=1, and for =0, Bi=1, N,.=0, 6,=0, and h=-0.3

e

0.5 1 1.5 2

Fig. 5 The variation in the temperature @ on the surface of the
spherical body (n=1) for different values of the Biot number
Bi(Bi=0.5,1,2) and B=1, N,.=0, 6,=0, and h=-0.3
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0.8

0.7

0.6 F

0.5}

0.4t

Fig. 6 The variation in the temperature @ on the surface of the
spherical body (n=1) for different values of the radiation-
conduction parameter N,.(N,.=0.25,0.5) and B=1, Bi=0.5, 6,
=0.5, and h=-0.2

the temperature 6 of the spherical body through the same values
of 7and for the Biot number Bi=2, and the same values of B, N,
6,, and h. Figures 7 and 8 investigate that the temperature gener-
ally decreases as the Biot number Bi enlarges, and for the case
n=1, that is, on the surface of the spherical body, the temperature
decays more rapidly for large values of the Biot number. Figure 9
views the spatial variations in the temperature @ of the spherical
body through different values of +(7=0.05,0.10,0.20,
0.35,0.50,1,1.5), for the radiation-conduction parameter N
=0.25, and for the values B=1, Bi=0.5, 6,=0.5, and h=-0.2,
while Fig. 10 also views the spatial variations in the temperature
of the spherical body, through the same values of r, for N,;=0.5,
and for the same values of B, Bi, 6,, and h. Figures 9 and 10

0.8

0.6

0.4f / \
0.2} '/ \

0.2 0.4 0.6 0.8 1

n

Fig. 7 The variation in the temperature @ on the surface of the
spherical body through different values of (7
=0.05,0.10,0.20,0.35,0.50,1) and for (Bi=1), B=1, N,.=0, 6,=0,
and h=-0.3

(=]
lg }

0.8 |

0.6 |

0.4 / \
0.2} ‘/ \

0.2 0.4 0.6 0.8 1

Fig. 8 The variation in the temperature @ on the surface of the
spherical body through different values of (7
=0.05,0.10,0.20,0.35,0.50,1) and for (Bi=2), B=1, N,.=0, 6,=0,
and h=-0.3
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0.8 /
0.6 /
0.4 *

0.2

n
0.2 0.4 0.6 0.8 1

Fig. 9 The variation in the temperature @ on the surface of the
spherical body through different values of (7
=0.05,0.10,0.20,0.35,0.50,1,1.5) for the radiation-conduction
parameter (N,.=0.25) and B=1, Bi=0.5, §,=0.5, and h=-0.2

investigate that the temperature of the spherical body generally
decreases as the radiation-conduction parameter N, increases, and
for the case »=1, that is, on the surface of the spherical body, the
temperature decays more rapidly for large values of this param-
eter.

5 Conclusion

This paper treated the application of the homotopy analysis
method for a strongly nonlinear problem in both the governing
equation and the boundary condition. The nonlinear problem de-
scribes the combined convective and radiative cooling of a spheri-
cal body. The obtained homotopy analytic solution gives accurate
spatial and temporal variations in the temperature, which indicate
that, for the nonlinear model of combined convective and radia-
tive cooling of a spherical body, the temperature on the surface of
the body decays rapidly for large values of the Biot number Bi
and the radiation-conduction parameter N,. This analytic ap-
proach of the homotopy analysis method gives us a new tool to
obtain analytic approximations for unsteady nonlinear heat trans-
fer problems, which are valid for all dimensionless times. The
treatment proved the ability and flexibility of this method to
handle such kinds of problems for different bases, and give con-
vergent analytic approximations in a direct effective scheme.
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Fig. 10 The variation in the temperature # on the surface of
the spherical body through different values of (7
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Thermal Response of Supersonic
Airflow to a Fin Protrusion
Situated on a Curved Surface

Aerodynamic heating of an airfoil with a short fin attached to its surface is computation-
ally investigated. This research is motivated by the fact that the gap fillers inserted
between the insulation tiles of the space shuttle thermal protection system may sometimes
get loose and extend beyond the surface and cause an uneven aerodynamic heating of the
surface. It is often difficult for engineers to determine whether the protruded gap filler
would cause an undesirable effect in the boundary layer including early turbulence
transition or shockwaves that could cause an unsafe increase in surface temperature. In
this investigation, the supersonic flow over NACA 0012 airfoil on which a short fin is
attached is studied using a computational approach. The method is validated by the
experimental data available in published literature. The results indicate a significant
increase in the surface temperature in the vicinity of the fin. This elevated temperature
extends downstream beyond the location of the fin and covers a large portion of the
airfoil downstream of the fin. The fin induces an oblique shockwave followed by an
expansion wave. [DOI: 10.1115/1.3155003]

Keywords: aerodynamic heating, gap filler, supersonic, space shuttle, shockwave, fin

1 Introduction

In supersonic flights, a bow shockwave appears upstream of the
flying objects. Air decelerates as it flows through the nose of the
bow shockwave and reaches the stagnation point on the leading
edge of the airfoil. On either side of the bow shockwave, the flow
decelerates but it remains supersonic downstream of the oblique
shockwave. Supersonic flights experience aerodynamic heating.
The presence of even a small protrusion on the surface disturbs
the flow, breaks the partial insulating effect of the boundary layer,
and exposes the surface to higher levels of aerodynamic heating.
In this study, we examine the interaction between a short fin po-
sitioned on the surface of an airfoil and the supersonic flow.

The present research was motivated by the news a few years
ago that NASA authorized a spacewalk to remove two sections of
gap filler that protruded between the insulation tiles of the space
shuttle Discovery [1]. The gap fillers, which are made of ceramic-
coated fabrics, are placed between the shuttle’s insulation tiles to
provide flexibility for the tiles and also to prevent hot gases from
entering the gap between the tiles, protecting the internal super
structure of the space shuttle against aerodynamic heating.

In this work, we consider a short fin as a model of gap filler,
attached to the surface of a NACA 0012 airfoil flying at super-
sonic speeds (Fig. 1). The fin length is 0.833% of airfoil chord
length. This is obtained by scaling the exposed length of the actual
gap filler, namely, 27.94 mm (1.1 in.) [2], to a near unit chord
length used in the present computations. The fin is perpendicular
to the airfoil surface. In our computations, the fin is positioned on
the surface at x/c=0.15, 0.30, or 0.80, where x=0 indicates the
nose position.

Despite the importance of the problem, aerodynamic heating
due to protruding gap fillers, or alternatively fins, have not been
studied widely in open literature. One of the earlier space-related
research works dealing with aerodynamic heating is presented in
Ref. [3]. In this report, cylinders with cone heads are positioned
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streamwise in a supersonic flow and the effect of aerodynamic
heating is documented in terms of heat recovery factor. Later in
this paper, we shall compare our computational results with those
reported in this reference.

In an attempt to study the effect of protruding gap fillers, a
number of researchers modeled the problem with a forward- or a
backward-facing step [4,5]. Although a step model may be a good
representation of protruding gap filler on a surface, such models
do not capture the full effect of the protrusion. A more recent work
[6] studied the deflection or bending of gap fillers. The pressure
load during re-entry was considered and the likelihood of gap
filler extraction caused by the reentry pressures was examined.

The present research is focused on the impact of a protruding
fin on a surface in supersonic flow. The fin is mounted on NACA
0012 airfoil with a Mach number of 2.5. The results are presented
for pressure, skin friction, Mach number, and temperature recov-
ery factor. The aerodynamic heating, which is demonstrated with
the aid of the temperature recovery factor, is compared with ex-
perimental data of other investigators.

2 Mathematical Formulation

The flow over airfoil is formulated by writing governing equa-
tions for mass, momentum, and thermal energy.

Continuity  di(pu;) =0 (1)
Momentum 3J(pu,uj) == ¢9lp + &J{M[&Ju, + 19in - (2/3)5”(9€U€:|}
+0;(- pm) (2)
Energy  di[ui(pE + p)] = gj[(k + cpu/Pr)diT + Ui(7ipers]  (3)
where (7j)efr= er(dilj + 9U;) = (2/3) pesrdU Gij.
The turbulence is modeled by the Spalart—=Allmaras model [7].

Reynolds stresses are based on the Boussinesq hypothesis (see
Ref. [8]):

= puiuj = wy(dju; + i) = (2/3)(pk + pedu) (4)

Turbulent viscosity, w, is computed from the modified turbulent
kinematic viscosity, 7 (see Eq. (6)). The transport equation for the
modified turbulent kinematic viscosity is
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Fig. 1 The NACA 0012 airfoil with a fin protrusion

a(p1uy) = G, + (UosH{dj[ (u + pp)aju] + Copp(99)* =Y, (5)

In this equation, G, and Y, are the production and destruction of
turbulent viscosity, respectively. These terms are given in Ref. [8].
The symbols o, and Cy, represent the constant values given in
Ref. [8]. It is to be noted that, in Spalart—=Allmaras model, the
turbulent kinetic energy, k, is not calculated. Therefore, the corre-
sponding term in Eq. (4) is ignored for the evaluation of Reynolds
stresses.

Once the modified turbulent kinematic viscosity is evaluated
from Eq. (5), the turbulent viscosity, w, is determined from (see
Sec. 12.3.3 of Ref. [8])

M= p;ful (6)
In this equation, f,;=x%/(x*+C3), x=7/v, and C,;=7.1. Ideal
gas equation is used for air density and the Sutherland law for
viscosity [8].

Boundary conditions for the governing equations are as fol-
lows. Fluid velocity is zero on airfoil and fin surfaces. At the outer
boundary, defined as pressure far field, the absolute pressure is
15761.5 Pa and the Mach number is 2.5. The surface of the airfoil
is adiabatic (zero temperature gradient) and air temperature on the
outer boundary is 221.0 K. At the walls, the modified turbulent
kinematic viscosity, 7, is set equal to zero. The present simulation
was chosen as a representative supersonic case of an actual flight
condition of the shuttle orbiter system. The landing phase is called
the terminal area energy management and is conducted at an al-
titude of about 25,000 m. The speed of the orbiter during this
phase of landing puts the shuttle at Mach 2.5.

3 Computational Approach and Validation

The outer boundary of the computational domain is constructed
from a semicircle in front of the airfoil, while it is rectangular on
the backside. This domain extends horizontally from x=
=549 m to x=10 m and vertically from y=-6.5 m to y
=6.5 m. The chord length of the airfoil is 1.009 m and it is posi-
tioned in such a way that its leading edge is at the origin, namely,
(x,y)=(0,0). The domain is discretized using a structured mesh
consisting of nearly radial and circular lines in the semicircular
section and horizontal and vertical straight lines downstream. The
mesh was clustered near the walls to resolve the steep gradients of
the dependent variables.

The computations are performed using FLUENT 6.3 [8]. The
pressure-based method, which is a new feature in FLUENT 6.3, is
used for the computations. Spalart-Allmaras one-equation turbu-
lence model is used with the strain/vorticity-based production op-
tion and viscous heating. The pressure-velocity coupling is se-
lected as coupled with a Courant number of 200 and an explicit
relaxation factor of 0.5 for both momentum and pressure. Under-
relaxation factors for density, body force, modified turbulent vis-
cosity, turbulent viscosity, and energy are 0.5, 1, 0.9, 1, and 0.8,
respectively. Although the Courant-Friedrichs-Lewy (CFL) condi-
tion allows using a higher Courant number in implicit methods, at
the onset of the computations, these factors and the Courant num-
ber needed to be reduced to control the stability and convergence
of the solution. All the computations are based on the second-
order upwind discretization scheme. The iterations were continued
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Fig. 2 Grid refinement study and validation of the computa-
tional results for NACA 0012 airfoil. The experimental data are
taken from Fig. 1 of Ref. [9].

until mass and momentum residuals were below 10~ and energy
residual was below 107,

A number of preliminary runs were performed to ensure that the
computations were independent of the mesh size. Figure 2 is a
plot of surface pressure coefficient versus dimensionless distance
along the chord line. It is clear from the figure that as the number
of mesh cells increases the pressure coefficient approaches the
final solution. The solid circles in the figure are the experimental
data taken from Fig. 1 of Ref. [9]. Although the experimental
uncertainty is not given in this reference, the data scatter seen in
the figure is indicative of a reasonable uncertainty in the measure-
ments. The good agreement between the computations and experi-
mental data confirm the present approach.

4 Results and Discussion

Contours of the Mach number for the flow over NACA 0012 at
M=2.5 are presented in Fig. 3. The fin protrusion is mounted on
the upper surface of the airfoil at x/¢=0.15, 0.30, and 0.80. A bow
shockwave is standing in front of the airfoil. The flow decelerates
as it goes through the shockwave. Downstream of the shockwave,
flow is subsonic in a small neighborhood between the shockwave
and nose of the airfoil. However, on either side of the airfoil, the
flow Mach number is reduced to below M=25, but it is still
supersonic.

Careful examination of the contour lines indicates that the fin
generates an oblique shockwave followed by an expansion wave.
Flow deceleration and acceleration through these fin-induced
waves are clearly seen from the intensity change of the contour
lines. The expansion wave near the fin tip is reminiscent of flow
acceleration to a Mach number close to that of the freestream,
namely, M=2.5. Also noted in the figure is a subsonic region in
the neighborhood of the fin.

The fin effect is better understood when the contour lines above
the airfoil are compared with those below. The presence of the fin
has two prominent effects. One is to disturb the boundary layer,
and the other is the formation of a secondary shockwave and an
expansion wave. With regard to the first effect, the fin disturbs the
boundary layer and slightly pushes the high-speed flow away from
the surface of the airfoil. This is seen as a thicker layer on the
upper surface from the location of the fin all the way to the trail-
ing edge. As to the second effect, as the fin is moved downstream,
namely, a shift in fin position in +x direction, the aforementioned
shockwave and expansion wave also move downstream and be-
come weaker in strength. The weaker strength of the fin-induced
waves is evident from the wave angle.

The information conveyed in the pressure contours of Fig. 4 is
a confirmation of the contour lines of Mach number in Fig. 3. The
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Fig. 3 Contours of Mach number for supersonic flow over
NACA 0012 airfoil at M=2.5. Flow is from left to right. The fin is
located at x/c=0.15, 0.30, and 0.80.

highest pressure is just after the bow shockwave on the nose of the
airfoil. The contour lines in the vicinity and above the fin confirm
the presence of the shockwave followed by an expansion wave.
The disturbance caused by the fin is more clearly recognized when
flow above the airfoil is compared with that below. As the fin
location is shifted further downstream, the disturbed flow is also
shifted downstream to the neighborhood of the fin location. The
pressure contours of Fig. 4 confirm the previous observation in
Fig. 3 that the fin-induced shockwave becomes weaker when the
fin is shifted downstream.

Pressure distribution on the airfoil surface is presented in terms
of pressure coefficient in Fig. 5. The open symbols are for the top
surface, which has the fin, while the solid symbols are for the
bottom surface of the airfoil. The points deviating from the
smooth trend are for the neighborhood of the fin positions. Pres-
sure upstream of the fin is higher and that for the immediate
downstream of the fin is lower than the undisturbed pressure trend
of the lower surface. The extent of pressure disturbance is larger
for the fins located further upstream. The pressure disturbance
caused by the presence of the fin is expected to have an adverse
effect on the drag force of the airfoil.

Skin friction coefficients of the upper and lower surfaces of the
airfoil are shown in Fig. 6. Since the lower surface does not have
a fin, the distribution of the skin friction coefficient is smooth on
this surface. For the upper surface, however, the fin disturbs the
flow and skin friction coefficient has deviated from the smooth
trend. The deviations caused by the presence of the fin are rela-
tively large and extend downstream up to the trailing edge. In this

Journal of Heat Transfer

Fig. 4 Contours of pressure for supersonic flow over NACA
0012 airfoil at M=2.5. Flow is from left to right. The fin is located
at x/c=0.15, 0.30, and 0.80.

respect, the impact of the protruded fin on skin friction coefficient
is more significant than that seen for the pressure coefficient. It
should be noted that the skin friction coefficient depends on the
velocity gradient at the wall, which is a more sensitive parameter
to near-surface disturbances than pressure.

Contours of static temperature are shown in Fig. 7. Air tempera-
ture rises across the bow shockwave. The largest temperature rise

Open Symbols -- Top Surface
Solid Symbols -- Bottom Surface

1.5 4
L
®
14
2  Fin Position
o
o & x/c=015
0.5 A 8“’9 0.30
o
o 0.80
P
0 o : — ;
0.2 0.4 0.6 08 1
-0.5 -

Fig. 5 Distribution of pressure coefficient on the upper and
lower surfaces of the airfoil; NACA 0012; M=2.5
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Fig. 6 Distribution of skin friction coefficient on the upper and
lower surfaces of the airfoil; NACA 0012; M=2.5

occurs through the normal section of the shockwave just in front
of the nose. The highest surface temperature is at the stagnation
point on the nose.

It is clear from the figure that the presence of the fin generates
an aerodynamic heating that is spread over the fin neighborhood.
Judged from the intensity of the contour lines, the aerodynamic

200

Fig. 7 Contours of static temperature for supersonic flow over
NACA 0012 airfoil at M=2.5. Flow is from left to right. The fin is
located at x/c=0.15, 0.30, and 0.80.
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Fig. 8 Distribution of the temperature recovery factor on the
upper and lower surfaces of the airfoil; NACA 0012; M=2.5. The
experimental data are from Fig. 9 of Ref. [3].

heating of the fin is comparable to the highest surface temperature
at the stagnation point on the airfoil nose. This is also evident
from the temperature recovery factors to be discussed next.

Temperature recovery factor, rc:(TaW—Tw)/(Ui/Zcp), is an in-
dication of the aerodynamic heating of the surface. Figure 8 pre-
sents the distribution of recovery factor for the upper and lower
surfaces of the airfoil. In addition to the present computational
values, the experimental data for streamwise cylinders having a 40
deg cone for M=2.87 are also shown for comparison.

The highest attainable value of temperature recovery factor is 1,
which occurs at the stagnation point. Therefore, as seen in Fig. 8,
the recovery factor decreases from the stagnation value of 1 to
around 0.91 at the trailing edge. The range of experimental data is
close to that of computational values. Although the two problems
are not exactly the same, they have many common features that
make this comparison relevant and supportive of the present com-
putations.

It is seen in Fig. 8 that the temperature recovery factor increases
in the vicinity of the fin location. The higher recovery factors at
such points indicate higher surface temperatures. As the fin is
placed further downstream, the corresponding increase in the re-
covery factor is also shifted downstream. Furthermore, it is seen
in the figure that the enhancing effect of the fin on the recovery
factor extends beyond the fin location to far downstream, covering
a considerable area of the airfoil. These results indicate that re-
moving the fin, or extended gap filler, will considerably reduce the
aerodynamic heating of the surface.

In the classical problems of high-speed convective heat transfer,
the temperature recovery factor is often expressed as a function of
Prandtl number. For example, for laminar boundary layer on a flat
plate, ro~Pr2, and for turbulent boundary layer, r,~Pr'® (see
Ref. [10]). In an attempt to see any possible correlation between
temperature recover factor and Prandtl number for the present
work, we present Fig. 9 in which the recovery factor of the airfoil
with the fin position at x/c=0.15 is plotted as a function of
Prandtl number. Also shown in this figure is the range of experi-
mental data for various geometries taken from Table 2 of Ref. [3].
It is to be noted that the vertical line in this figure is intended to
show only the range of experimental data, and not the trend.

It is seen that the heat recovery factor obtained from the present
computations is well within the range of experimental values. Al-
though the recovery factor may not correlate well with Prandtl
number, the increasing trend with Pr is reminiscent of the trends
depicted by the 1/2 and 1/3 powers of Pr for the laminar and
turbulent boundary layers.
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Fig. 9 Distribution of the temperature recovery factor on the
upper and lower surfaces of the airfoil as a function of Prandtl
number; NACA 0012; M=2.5. The range of experimental data is
from Table 2 of Ref. [3].

5 Concluding Remarks

This computational work studied the impact of protruded gap
filler on the aerodynamic heating of the surface of an airfoil. The
gap filler was modeled by considering a short fin attached perpen-
dicularly to the surface of NACA 0012 airfoil.

The computations indicated the formation of an oblique shock-
wave around the fin, which was followed by an expansion wave.
As a result, the airflow over the fin decelerated through the shock-
wave and subsequently accelerated through the expansion wave to
near the freestream Mach number.

The presence of the fin enlarged the boundary layer down-
stream along the surface of the airfoil. The enlargement of the
boundary layer became evident when the flow downstream of the
fin was compared with the undisturbed flow on the lower surface
of the airfoil.

The fin disturbed both the surface pressure and the skin friction
coefficient in the neighborhood of the fin. It was noticed that
pressure disturbance was limited to a small region around the fin,
while the skin friction disturbance extended downstream and its
effect was noticeable over a major portion of the airfoil.

The fin also enhanced the aerodynamic heating of the surface.
Like skin friction coefficient, aerodynamic heating caused by the
fin elevated the surface temperature not only in the neighborhood
of the fin but it also elevated temperature over a major portion of
the airfoil surface downstream of the fin.

Aerodynamic heating was expressed in terms of temperature
recovery factor. The presence of the fin increased the heat recov-
ery factor to a maximum value at the fin location. As the fin was
positioned further downstream, the maximum value of tempera-
ture recovery factor at the fin location decreased. It appears that,
for the range of parameters and the specific geometry of this in-
vestigation, the effect of fin on enhancement of aerodynamic heat-
ing is more pronounced when the fin is located further upstream.
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Nomenclature
C = Courant number (uAt/AXx)
Cp, = constant (0.622)
C,1 = constant (7.1)
¢ = chord length
¢, = specific heat; pressure coefficient
((p=p-)/(0.5p.U2))
E = total energy
G, = production of turbulent viscosity
k = thermal conductivity; turbulent kinetic energy
Mach number
Pr, = turbulent Prandtl number
pressure
r. = temperature recovery factor
(Taw=T-)/ (U1 2¢p))
T = temperature
T,w = adiabatic wall temperature
T.. = freestream temperature
u; = velocity component
x = coordinate along the chord line
y = coordinate perpendicular to chord line
Y, = destruction of turbulent viscosity

Greek Symbols

& = Kronecker delta

p = molecular viscosity

Mg = effective viscosity (u+ uy)
ue = turbulent viscosity
v = kinematic viscosity

7 = modified turbulent kinematic viscosity
p = density

o3 = constant (2/3)

(7ij)ett = deviatoric stress tensor

i = (9()/(‘7XJ

>
|
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Flow Maldistribution and
Performance Deteriorations in
Membrane-Based Heat and Mass
Exchangers

Heat mass exchangers are crucial for the prevention of epidemic respiratory diseases
such as HIN1 (swine flu). The flow maldistribution affects their performance seriously.
The flow maldistribution and the consequent performance deteriorations in heat and
mass exchangers are investigated. The focus is on moisture effectiveness deteriorations.
As a first step, a computational fluid dynamics (CFD) code is used to calculate the flow
distribution, by treating the plate-fin core as a porous medium. Then a coupled heat and
moisture transfer model between the two air flows in the plate-fin channels is set up with
slug flow assumption in the channels. Using the CFD predicted core face flow distribu-
tion data, the sensible heat and moisture exchange effectiveness and the performance
deterioration factors are calculated with finite difference scheme. The results indicate
that under current core to whole exchanger pressure drop ratio, when the channel pitch
is below 2.0 mm, the flow distribution is quite homogeneous and the sensible and latent
performance deteriorations due to flow maldistribution can be neglected. However, when
the channel pitch is larger than 2 mm, the maldistribution is quite large and a 10-15%
thermal deterioration factor and a 20-25% latent deterioration factor could be found.
Mass transfer deteriorates much more than heat transfer does due to larger mass transfer

resistance through membranes.
[DOI: 10.1115/1.3154832]

Keywords: heat transfer, moisture transfer, swine flu, flow maldistribution, heat and

mass exchangers

1 Introduction

Heat and mass exchangers (enthalpy exchangers, or the so-
called energy recovery ventilators) [1,2] could save a large frac-
tion of energy for cooling and dehumidifying the fresh air since
cool and dryness would be recovered from the exhaust stream to
the fresh air in summer. Besides energy conservation, the heat and
mass exchangers have the additional benefits of ensuring suffi-
cient fresh air supply, which is crucial for the prevention of epi-
demic respiratory diseases such as HIN1 (swine flu), SARS, and
bird flu.

Besides exchanger cores, ducts, inlet/outlet vents, and fans are
necessary to assemble a commercial product. Figure 1 shows the
schematic of typical commercialized heat and mass exchangers.
As seen, the whole exchanger is composed of inlets, outlets, ex-
changer shells, separating plates, and most importantly, the core.
When installed, the exchanger core is rotated 45 deg and inserted
into the exchanger shell, forming two parallel air ducts with the
separating plates in the rectangular shell box. Fresh air is sucked
into the exchanger by a fan (not shown in the figure) through the
fresh air inlet. Exhaust air is sucked into the exchanger by another
fan through the exhaust air inlet. The two air streams are drawn
through the exchanger core in a cross-flow arrangement. The
plate-fin core structure is popular due to its high mechanical
strength and large packing density. The core material is vapor
permeable membranes that could transfer both the sensible heat
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and moisture simultaneously. Thus the sensible heat and the latent
heat (moisture) could be recovered through this equipment.

Fluid flow and heat and mass transfer in such an exchanger are
of interest to predict heat and moisture recovery efficiencies. The
effectiveness—number of transfer units (e-NTU) method has been
the most convenient methodology to predict sensible and latent
performances [3]. Fluid flow and heat mass transfer in a single
core channel provide the basic transport data for effectiveness-
NTU methodology. There have been numerous investigations of
the heat transfer and fluid flow in a single plate-fin channel with
infinite fin conductance [4-11]. Besides fundamental studies in a
plate-fin channel, there have been several studies on heat and
moisture transfer in heat and mass exchangers [12,13]. In these
studies, a uniform flow distribution on core face was assumed. It
should be noted that, considering the complex ducting work inside
a practical enthalpy exchanger shell, it is anticipated that the flow
would undergo turnarounds, expansions, and contractions, which
would finally lead to flow maldistribution across the core face.
This issue has not been mentioned at all before.

The flow maldistribution effects have been well recognized and
presented for sensible-only heat exchangers [14-19]. The flow
maldistribution is generated by the velocity profiles in the inlet
ducts. Their effects on heat transfer were estimated. However, the
effects of flow maldistribution on heat and mass exchangers,
which have simultaneous heat and mass transfer, were not consid-
ered before. Further, previous studies have serious problems in
estimating flow maldistribution [20].

This problem will be investigated in this study. The influences
of inlet duct, the core, and the outlet duct will be considered
simultaneously. The first objective is to predict the flow maldistri-
bution on the core face. Then their effects on both the thermal
performance and the latent performance will be discussed.
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Fig. 1 Schematic of a cross-flow enthalpy exchanger with a
membrane core

2 Experimental Work

To measure the heat and moisture exchange effectiveness, sev-
eral experiments were done. A schematic of the test-rig is shown
in Fig. 2. Two air ducts are assembled. One is for fresh air, and the
other is for exhaust air. Each duct comprises of a variable speed
blower downstream from the core, a wind tunnel, a set of nozzles,
wind straighteners, and temperature sensors before and after the
exchanger. The exchanger is connected to the two ducts with
flanges. The whole test-rig is established in a constant temperature
and constant humidity room, so the inlet temperature and humid-
ity of the exhaust air, which equals to the room air, can be con-
trolled and maintained very well even under very hot and humid
ambient weather conditions. Additional electric heating circuits
and humidifiers are installed for the fresh air duct. The heating
and humidification power currents can be adjusted according to
the fresh air set points’ temperature. A 10 mm thick plastic foam
insulation layer is pasted on the outer surfaces of the ducts and the
exchanger shells to prevent heat dissipation from the system to the
surroundings. The heat or moisture loss from the system is below
0.5%. Air leakage is prevented.

The uncertainties are temperature =0.1°C; humidity +2%, and
volumetric flow rate +1%. The final uncertainty is +4.5% for
exchanger effectiveness. The fresh air and exhaust air tempera-
tures or humidity differences are controlled to be less than 0.1%.
From these preparatory works, the test-rig is considered to be
reliable. In addition, heat and mass balance between the fresh air
and the exhaust air are checked.

After the measurement of the mean inlet and outlet tempera-
tures and humidities, the exchanger effectiveness can be calcu-
lated with the following equations. These are the experimentally
obtained effectiveness.

For sensible effectiveness,

Nozzles

Table 1 Structural and transport parameters of the three cores

Symbol Unit Core A Core B Core C
n 57 92 127
Xg, YE mm 185 185 185
ZF mm 460 460 460
Siny Oy um 100 100 100
Mins Np W mtK1! 0.44 0.44 0.44
[4 deg 60 60 60
2a mm 4.0 2.5 1.8
Dy, mm 3.72 2.33 1.67
A, m?2 3.90 6.30 8.69
As, A m? 8.39 13.55 18.68
Qg 0.42 0.67 0.93
O 0.0019 0.0031 0.0043
Nu 1.413 1.582 1.618
Sh 0.595 0.597 0.603
f-Re 53.3 53.3 53.3
Dy, Diin m2/s 5.15x107%° 515x1071 515x10710
p kg/kg 0.58 0.58 0.58
Inlet/outlet duct mm 262 262 262
length
Inlet/outlet vent mm 60 60 60
diameter
£, = (ch)f(Tfi - Tfo) - (ch)e(Teo B Tei) (1)
(Gep)min(Tri = Tei)  (GCmin(Tri = Tei)
and for latent effectiveness,
_ (G)(wfi— 01g) _ (G)e(weo — @ei)
L 2

(Gmin(wfi = @e)) (G i@ = wg))
where T and o are temperature (°C) and humidity ratio (kg
moisture/kg dry air), respectively. Subscripts f, e, i, and o refer to
fresh air, exhaust air, inlet, and outlet, respectively. Subscripts s
and L refer to sensible and latent, respectively. The sensible effec-
tiveness and the latent effectiveness are the key performance in-
dices to evaluate an enthalpy exchanger.

When the two streams have the same mass flow rate

_ (Tfi B Tfo) _ (Teo B Tei) Jp—

BT MTe) Ta-Ta) ©
L= (wfi — W) _ (wgo = wei) _ wzo 4)

(0fi — wgi) (w5~ wg)

Three membrane cores are built and tested. They are plate-fin
structure with triangular duct cross sections. Both the plates and
the fins are made with hydrophilic polymer membranes. The core
depths are the same: 460 mm. The geometrical and transport prop-
erties are listed in Table 1. As seen, the outer dimensions of the
three cores are the same, so they can be inserted into the same
exchanger cell. However, the channel pitches are different. Core A

Data sampling holes

O
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g

Sucking fan _'lN\ | I

. core

- + [Xe] \ - 3
o o [F 3

R

4)

Sucking fan

|

Heaters gymidifier

Enthalpy
Exchanger

Fig. 2 Experimental setup of the enthalpy exchanger with a membrane

core
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Fig. 3 The calculating domain for fresh air flow

has 57 channels for each of the two flows, Core B has 92 chan-
nels, and Core C has 127 channels. Core C is the most compact
one.

3 Heat and Moisture Transfer Model

The fluid flow in the exchanger was numerically calculated
[20]. The fresh air duct and the exhaust air duct are in symmetry.
So only the fresh air duct as shown in Fig. 3 is selected as the
calculating domain. There have been several numerical studies
concerning the modeling of flow maldistribution in plate heat ex-
changers, on a channel to channel basis [21,22]. However, due to
the limit in computer capacity and speed, the number of channels
that can be modeled directly is quite small. The large number of
channels prohibits the direct simulation of flow on a channel to
channel basis. To solve this problem, this study simulates the core
as a porous medium, which only permits one-dimensional air flow
along the channel length [20]. The methodology is reasonable,
considering the small channel pitch (1.5-5 mm) in the core. The
honeycomb type core structure permits the assumption of un-
mixed flow for both of the fluids, in other words, cross or trans-
verse mixing of fluids is not considered. When modeling the fluid
flow, heat and mass transfer is not considered. In other words,
only the flow in one stream is considered.

After the flow distribution on the core face is known, the con-
vective heat and mass transfer between the fresh air and the ex-
haust air can be studied. To aid in the model setup, the following
assumptions are made: (1) The flow distribution inside a channel
is taken to be uniform giving a “slug flow” of fluid inside each
channel. It can be justified as the channel gap is small. A steady
slug flow assumption has been usually used in a single phase flow
in a duct. (2) The flow in channels is fully developed both hydro-
dynamically, thermally, and concentrationally. For fully developed
laminar flow in ducts with highly conductive walls, the Nusselt
and Sherwood numbers are constants once the cross section is
determined. Therefore the convective heat transfer and mass trans-
fer coefficients are also constants. (3) The plates are considered to
be thin enough so that axial conduction in them in the direction of
flow can be neglected. (4) The thermophysical and transport prop-
erties of the fluids are considered to be independent of tempera-
ture and pressure.

A mesoscopic model is set up. Each channel cross section is
represented by one temperature or humidity. The temperature or
humidity varies along flow directions (x for fresh air and y for
exhaust air) and the corresponding perpendicular directions (y for
fresh air and x for exhaust air) simultaneously. On each channel
cross section, though temperature or humidity is two-
dimensionally different locally, in this study for the whole ex-
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changer, they are represented by a lumped parameter for each
channel cross section. It can be considered as a semilumped pa-
rameter model. The two air streams, one hot and humid (fresh air),
and the other cool and dry (exhaust air), exchange heat and mois-
ture in the exchanger in a cross-flow arrangement. Two-
dimensional heat and mass transfer model can be set up to govern
the energy and mass conservations in the following two air
streams:

P NTU(Tp = T5) (5)
aT* * #

: = NTUse(Tpe -Te) (6)
" =NTU (wp; — @) (7
ﬁy: = NTULe(wpe - ) (8)

where x is flow direction for fresh stream and y is flow direction
for exhaust stream. Certainly since the local mass flow rate is
variant with both core height (y direction) and core depth (z di-
rection), the local number of transfer units is different from point
to point on the core surface. Subscript f refers to the fresh side
and e refers to the exhaust side; s refers to sensible and L refers to
latent; and pf refers to membrane surface on the fresh side and pe
refers to membrane surface on the exhaust side.
The dimensionless temperature and humidity are defined by

T-T,
-I-* = el (9)
Thi— Tei
o= (10)
Wfj ~ Wej
The boundary conditions are as follows.
For the fresh side,
Tile=0=1 (11)
wfly=0=1 (12)
and for the exhaust side,
T: y*=0 =0 (13)
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w:|y*:0 =0 (14)
The dimensionless coordinates are defined by

X' == (15)

Xp

w_ Y
y == (16)

YE

z
7'=— (17)

Zp

where xg and yg are the channel lengths for fresh air and exhaust
air (m). Here xz=yg. The core depth, which determines the total
number of channels, is zg. The air side local number of transfer
units is defined by

NTU = %((Gh—é\:)’f (18)
NTU,, = %% (19)
NTU = %%ﬁ)f (20)
NTU,, = %% (21)

where k and h are the air side convective mass transfer coefficient
(m/s) and convective heat transfer coefficient (kW m=2s™1), re-
spectively; G is air mass flow rate (kg/s); A is total transfer area
including plates and fins (m?) for each stream; and ¢, is specific
heat (k] kg™t K™1).

As seen in Egs. (18)—(21), the last term in the right hand side is
the overall number of transfer units for a stream. The local num-
ber of transfer unit is equal to the overall number of transfer units
divided by the local to overall mass flow ratio. Therefore the local
number of transfer units is inversely proportional to mass flow
ratio. The local number of transfer units increases with decreased
mass flow rate.

The convective heat transfer coefficient and mass transfer coef-
ficient can be calculated from established Nusselt and Sherwood
numbers [20]. For plate-fin channels of finite fin conductance, the
fully developed Nusselt and Sherwood numbers are influenced by
the aspect ratios (a/b) or apex angle for triangular duct, and fin
conductance parameters [10]. This is quite different from the
simple classical data of a sensible-only heat exchanger with infi-
nite fin conductance [13].

The fin conductance parameter for sensible heat transfer

_ MinSfin
® Na(2a)

where \g, is heat conductivity of fin, &, is fin thickness (m), and

(2a) is channel height (m). When the plate and the fin use the

same material, their heat conductivities are equal in Eq. (22).
The fin conductance parameter for moisture transfer

(22)

Q = PiinKpDrin Sfin
= Efin-p—finTin
paDa(2a)

where Dy, is water diffusivity in fin materials (m?/s) and K, is
partition coefficient, which reflects the moisture sorption potential
on fin materials. The value of k;, can be measured by adsorption
isotherms as

(23)
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y=k,RH (24)

where vy is water uptake in materials (kg moisture/kg material) and
RH is relative humidity of moist air. The more hydrophilic the
materials are, the higher the values of k, are.

Heat conduction through the plate is in equilibrium with the
convective heat transfer on both sides. The equilibrium can be
expressed by

(hA)(Ty =Ty = 3 (Tpr = The) (25)
(hA)e(Te - Tpe) == 5‘) (Tpf - Tpe) (26)

where A, is total transfer area (m?) of plates, A is heat conduc-
tivity of plate (kW m™ K1), and &, is thickness of plate (m). In
the above two equations, the right hand sides are heat conduction
through plates. They have the same value, but different signs. In
the left hand sides, the first equation represents convective heat
transfer in the fresh air side, and the second equation represents
convective heat transfer in the exhaust air side.

Moisture diffusion through the plate is in equilibrium with the
convective mass transfer on two surfaces. The equations can be
expressed by

A,D
pa(kA)(w; = wpf) = BP_;_E('}’pf - '}’pe) (27)
P
A,D
pa(kA)e(we — wpe) == Bp_;_E(')’pf - 7pe) (28)

P
where D, is water diffusivity in plate material (m?/s) and pp is
plate density (kg/m?).

The relation between humidity ratio and RH is [13]

exp(5294/T)
H= "o
10

Moisture emission rate (kg s™* m~2) through the plate from the
fresh air to the exhaust air

(29)

£= P

5 ('ypf - 7pe) (30)
p
Combining the above equations, it is deduced that
oDk, exp(5294/T)
E="2"P p1065p (a)pf— wpe) (31)

The total numbers of transfer units for sensible heat transfer and
moisture transfer are

_ (UA) ot _ (UA) 1ot

NTU ot = = (32)
st (ch)min (ch)min
kAot _ (kA)ot
NTU t=———— = ——— 33
Lt (ch)min (ch)min ( )
respectively, where
i} (AN i
o= (02 eow o
P
_ _ AD,\ 7t _
=it (B2
a%

In fact, the final sensible effectiveness and the latent effective-
ness can be estimated from the total number of transfer units with
established correlations [3], if a uniform flow distribution is real-
ized. However, to know the details of heat and moisture transfer in
the exchanger, detailed equations should be solved.
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Fig. 4 Sensible effectiveness of the three plate-fin cores under
various air flow rates. The solid line is the calculated values,
and the discrete dots are the measured data.

The exchanger thermal and latent performance deterioration
factors are defined by
7= Es,uniform ~ €s (36)

€s,uniform

_ €L,uniform ~ €L

TL— (37)
€L uniform
where &g yniform and & yniform are exchanger sensible and latent
effectiveness at uniform flow distribution, respectively.

4 Results and Discussion

4.1 Experimental Validation. A finite difference technique is
used to discretize the partial differential equations developed for
the air streams. The calculating domain of the core is divided into
a number of discrete nodes. Each node represents a control vol-
ume. The numbers of calculating node are 50 in both x and y
directions. Besides the discretization of energy and mass equa-
tions in x and y directions, the whole core depth is divided into
100 cells (z direction). Under this scheme, the whole core is di-
vided into 100 mini cross-flow heat exchangers in core depth. For
each mini cross-flow heat exchanger, the inlet velocity varies with
the y direction for fresh air and x direction for exhaust air, respec-
tively. The computational nodes match the physical nodes created
by the intersection of the channel boundaries.

The sensible effectiveness of the three cores under various
volumetric air flow rates are plotted in Fig. 4. The latent effective-
ness of the three cores under various air flow rates are plotted in
Fig. 5. The measured data are demonstrated by discrete dots. The
calculated data are plotted by a solid line. The maximum deviation
between the calculated value and the measured data is below 5%.
Due to the compact structure and the high packing density, the
heat transfer area is very large for such exchangers. Therefore the
exchanger effectiveness is rather high. The outside dimensions are
the same, but Core A has 57 passages, Core B has 92 passages,
and Core C has 127 passages. The resulting channel pitches are
Core A, 4.0 mm; Core B, 2.5 mm; and Core C, 1.8 mm. Core C is
the most compact one; therefore its effectiveness is the highest
among three. The sensible effectiveness is usually higher than
latent effectiveness, because moisture resistance through mem-
branes is much higher than thermal resistance through mem-
branes. The fresh air duct and the exhaust air duct have the same
flow distribution.

4.2 Flow Maldistribution. The effects of the core channel
pitch on flow maldistribution are modeled. Three cores with dif-
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Fig. 5 Latent effectiveness of the three plate-fin cores under
various air flow rates. The solid line is the calculated values,
and the discrete dots are the measured data.

ferent channel pitches are considered: A, 4.0 mm; B, 2.5 mm; and
C 1.8 mm. The core dimensions and other structural parameters
have been described in Table 1. The profiles of velocity nonuni-
formity (local to mean velocity ratio) on the core outlet face for
the pitch 2.5 mm are plotted in Fig. 6. The total volumetric air
flow rate for each stream is 150 m3/h, which equals to a mean
face velocity of 0.49 m/s or mean duct velocity of 0.98 m/s. The
flow distributions on the core inlet face are the same as those on
the outlet face, since only one-dimensional flow on channel length
is permitted.

A general rule can be concluded: The larger the channel pitch
is, the more serious the flow maldistribution is. The flow maldis-
tribution is codetermined by the inlet duct, the core, and the outlet
duct. The core itself plays a determinant role in the flow maldis-
tribution. These components should be coupled together to predict
the flow maldistribution. The incoming air impinges on the core
face and some flow is driven by the core face to the remote areas
at corners. There are swirls generated before the core face, which
lead to flow redistribution. The flow in the core becomes some-
what uniform, due to this redistribution. The higher the core re-
sistance is, the more serious the swirls are, and the more homo-
geneous the flow redistributes. The higher the total air flow rates
are, the more inhomogeneous the flow becomes.

4.3 Thermal and Latent Performance Deteriorations. With
the heat and mass transfer model, the local temperature and hu-
midity on the outlet face of the core can be calculated. Let us
assume that the whole exchanger is divided into a number of mini
exchangers in z direction. Each mini enthalpy exchanger is an x-y

LS {
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z*

Fig. 6 Velocity nonuniformity on the core face, Core B with a
channel pitch of 2.5 mm
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Fig. 7 Local dimensionless humidity of fresh air on the core
outlet face (x*=1), Core A with channel pitch of 4 mm

cross-flow enthalpy exchanger. The outlet temperatures for each
mini exchanger vary with x or y directions. Therefore, the outlet
temperature and humidity for fresh air are two dimensional on the
z-y face, while the outlet temperature and humidity for exhaust air
is two dimensional on the z-x face.

Figures 7 and 8 show the local dimensionless humidity on the
fresh air outlet face (x*=1) on two cores. As seen, for the homo-
geneous flow distribution on Core C, the dimensionless humidity
isolines are nearly parallel to plates, meaning the divided mini
exchangers in core depth have the same heat or mass effective-
ness. Both the flow and heat transfer are uniform in core depth.
The moisture transfer is not as uniform as heat transfer, due to
higher moisture resistance through membranes. The flow is uni-
form in the y direction, but the local temperature and humidity are
in the opposite. This is due to the cross-flow character between the
fresh air and the exhaust air, as in other common cross-flow heat
exchangers.

When the maldistribution becomes serious with increased chan-
nel pitches, the local temperature and humidity become irregular.
Generally, the higher the local velocity is, the higher the fresh air
outlet temperatures and humidity, and the less the heat and mass
effectiveness are. At the same time, the local temperature and
humidity are also influenced by the temperature or humidity dif-
ferences between the two neighboring fresh air and exhaust air.
This results in a phenomenon that the local outlet temperature or
humidity curves for Core A are more complex than those for Core
C.

For engineering applications, the overall heat and moisture ef-
fectiveness of the whole exchanger is more significant than local
values. Figure 9 depicts the exchanger thermal and latent perfor-
mance deterioration factors under various air flow rates for the
three cores. As can be seen, both the thermal and the latent per-
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Fig. 8 Local dimensionless humidity of fresh air on the core
outlet face (x*=1), Core C with channel pitch of 1.8 mm
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Fig. 9 Performance deterioration factors for the three cores
under various air flow rates

formance deterioration factors for Core C are very small and the
performance deterioration can be neglected. However, for the two
cores with larger channel pitches, the performance deteriorations
are substantial. The deterioration factors for Core B are the high-
est among the three. This is because the deterioration factors co-
determined by flow maldistribution caused effectiveness reduction
and the absolute values of effectiveness. The relative decreases in
effectiveness for Core B are higher than Cores A and C. The
sensible effectiveness is decreased by 15-20%, and the latent ef-
fectiveness is decreased by 20-25%. The higher deterioration fac-
tors for latent effectiveness are due to the higher moisture resis-
tance through membranes. Compared with sensible-only heat
exchangers, enthalpy exchangers should be paid more attention
for flow maldistribution. Latent effectiveness of an enthalpy ex-
changer is usually small. A uniform flow distribution becomes
more important because all the exchanger area should be equally
and sufficiently employed to take part in moisture exchange.

5 Conclusions

Flow maldistribution is a result of interactions between inlet
duct flow, flow in cores, and flow in outlet duct. The core plays a
determining role in flow distribution. Previous studies have failed
to reflect this phenomenon. The following results can be found.

(1) For plate-fin compact heat exchanger cores, the channel
pitch determines how serious the flow maldistribution is.
For the current channel to whole exchanger pressure drop
ratio, when the channel pitch is less than 2 mm, the flow
maldistribution is very small and can be neglected. When
the channel pitch is larger than 2 mm, the flow maldistri-
bution becomes serious and the nonuniformity problem
should be considered. This 2 mm limit would depend on the
geometric details such as width and depth of the core. The
cores of small pitches have larger pressure resistance,
which could offset some degree of flow maldistribution that
is generated by irregular duct geometries such as turn-
around, expansion, and contraction.

(2) Heat and moisture exchange effectiveness are inversely
proportional to local mass flow rate. For the cores with
channel pitches less than 2 mm, both the thermal and the
latent deterioration factors are less than 5%. When the
channel pitches are larger than 2 mm, the thermal perfor-
mance is deteriorated by 10-15%; while the latent perfor-
mance is deteriorated by 20-25%. Compared with sensible-
only heat exchangers, flow maldistribution has more
impacts on enthalpy exchangers.
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Nomenclature
a = half channel pitch (m)
A = area (m?)
= channel width (m)
cp, = specific heat (kJ kg™ K™

o

D = moisture diffusivity (m?/s)
Dy, = hydrodynamic diameter (m)
G = mass flow rate (kg/s)
h = convective heat transfer coefficient
(kW m—2 K™)
k = convective mass transfer coefficient (m/s)
k, = partition coefficient (kg/kg)
m = mass flow rate (kg m=2s™)
n = number of channels for each flow
P = pressure (Pa)
Re = Reynolds number
RH = relative humidity
S = source term
T = temperature (K)
V = volumetric flow rate (m3/h)
X = coordinate (m)
xg = channel length (m)
y = coordinate (m)
yg = channel length (m)
z = coordinate (m)
ze = core depth (m)

Greek Letters
p = density (kg/m®)
= effectiveness
= flow nonuniformity
half apex angle of channel (deg)
heat conductivity (W m™1 K1)
humidity ratio (kg/kg)
thermal performance deterioration factor
thickness (um)
= water uptake in materials (kg moisture/kg
material)
) = fin conductance parameter

R T TR
Il

Superscripts
* = dimensionless

Subscripts
a = air
e = exhaust air
f = fresh air
fin = fins
i = inlet
L = Latent

Journal of Heat Transfer

m = mean
0 = outlet
p = plate
s = sensible
References

[1] Zhang, L. Z., 2008, Total Heat Recovery: Heat and Moisture Recovery From
Ventilation Air, Nova Science, New York, Chap. 1, pp. 2-10.

[2] Kistler, K. R., and Cussler, E. L., 2002, “Membrane Modules for Building
Ventilation,” Chem. Eng. Res. Des., 80, pp. 53-64.

[3] Zhang, L. Z., and Niu, J. L., 2002, “Effectiveness Correlations for Heat and
Moisture Transfer Processes in an Enthalpy Exchanger With Membrane
Cores,” ASME J. Heat Transfer, 124(5), pp. 922-929.

[4] Shah, R. K., and London, A. L., 1978, Laminar Flow Forced Convection in
Ducts, Academic, New York, pp. 253-260.

[5] Incropera, F. P., and Dewitt, D. P., 1996, Introduction to Heat Transfer, 3rd ed.,
Wiley, New York, Chap. 8, p. 416.

[6] Shah, R. K., and Bhatti, M. S., 1987, “Laminar Convection Heat Transfer in
Ducts,” Handbook of Single-Phase Convective Heat Transfer, S. Kakac, R. K.
Shah, and W. Aung, eds., Wiley, New York.

[7] Chen, S., Chan, T. L., and Leung, C. W., 2000, “Numerical Prediction of
Laminar Forced Convection in Triangular Ducts With Unstructured Triangular
Grid Method,” Numer. Heat Transf., Part A: Applications, 38(2), pp. 209-224.

[8] Baliga, B. R., and Azrak, R. R., 1986, “Laminar Fully Developed Flow and
Heat Transfer in Triangular Plate-Fin Ducts,” ASME J. Heat Transfer, 108,
pp. 24-32.

[9] Zhang, L. Z., 2007, “Thermally Developing Forced Convection and Heat
Transfer in Rectangular Plate-Fin Passages Under Uniform Plate Tempera-
ture,” Numer. Heat Transfer, Part A, 52, pp. 549-564.

[10] Zhang, L. Z., 2007, “Laminar Flow and Heat Transfer in Plate-Fin Triangular
Ducts in Thermally Developing Entry Region,” Int. J. Heat Mass Transfer, 50,
pp. 1637-1640.

[11] Zhang, L. Z., 2008, “Heat and Mass Transfer in Plate-Fin Sinusoidal Passages
With Vapor-Permeable Wall Materials,” Int. J. Heat Mass Transfer, 51, pp.
618-629.

[12] Zhang, L. Z., Liang, C. H., and Pei, L. X., 2008, “Heat and Moisture Transfer
in Application-Scale Parallel-Plates Enthalpy Exchangers With Novel Mem-
brane Materials,” J. Membr. Sci., 325, pp. 672-682.

[13] Zhang, L. Z., 2007, “Heat and Mass Transfer in a Cross Flow Membrane-
Based Enthalpy Exchanger Under Naturally Formed Boundary Conditions,”
Int. J. Heat Mass Transfer, 50, pp. 151-162.

[14] Bassiouny, M. K., and Martin, H., 1984, “Flow Distribution and Pressure Drop
in Plate Heat Exchangers-1, U-Type Arrangement,” Chem. Eng. Sci., 39, pp.
693-700.

[15] Bassiouny, M. K., and Martin, H., 1984, “Flow Distribution and Pressure Drop
in Plate Heat Exchangers-Il, Z-Type Arrangement,” Chem. Eng. Sci., 39, pp.
701-704.

[16] Prabhakara Rao, B., Kumar, P. K., and Das, S. K., 2002, “Effect of Flow
Distribution to the Channels on the Thermal Performance of a Plate Heat
Exchanger,” Chem. Eng. Process., 41, pp. 49-58.

[17] Dwivedi, A. K., and Das, S. K., 2007, “Dynamics of Plate Heat Exchangers
Subject to Flow Variations,” Int. J. Heat Mass Transfer, 50, pp. 2733-2743.

[18] shah, R. K., 1985, “Flow Maldistribution-Compact Heat Exchangers,” Hand-
book of Heat Transfer Applications, W. M. Rohsenow, P. J. Hartnett, and E. N.
Ganic, eds., McGraw-Hill, New York, pp. 266-280.

[19] Ranganayakulu, Ch., Seetharamu, K. N., and Sreevatsan, K. V., 1997, “The
Effects of Inlet Fluid Flow Nonuniformity on Thermal Performance and Pres-
sure Drops in Crossflow Plate-Fin Compact Heat Exchangers,” Int. J. Heat
Mass Transfer, 40, pp. 27-38.

[20] Zhang, L. Z., “Flow Maldistribution and Thermal Performance Deterioration
in a Cross-Flow Air to Air Heat Exchanger With Plate-Fin Cores,” Int. J. Heat
Mass Transfer, in press; available online doi:10.1016/
j.ijheatmasstransfer.2009.03.049.

[21] Galeazzo, F. C. C., Miura, R. Y., Gut, J. A. W.,, and Tadini, C. C., 2006,
“Experimental and Numerical Heat Transfer in a Plate Heat Exchanger,”
Chem. Eng. Sci., 61, pp. 7133-7138.

[22] Bansode, A. S., Patel, S., Kumar, T. R., Muralidhar, B., Sundararajan, T., and
Das, S. K., 2007, “Numerical Simulation of Effects of Flow Maldistribution on
Heat and Mass Transfer in a PEM Fuel Cell Stack,” Heat Mass Transfer, 43,
pp. 1037-1047.

NOVEMBER 2009, Vol. 131 / 111801-7



M. Fang
S. Chandra
C. B. Park

Department of Mechanical and Industrial
Engineering,

University of Toronto,

Toronto, ON, M5S 3G8, Canada

Heat Transfer During Deposition
of Molten Aluminum Alloy
Droplets to Build Vertical
Columns

To create functional metal parts by depositing molten metal droplets on top of each other,
we have to obtain good metallurgical bonding between droplets. To investigate conditions
under which such bonds are achieved, experiments were conducted in which vertical
columns were formed by depositing molten aluminum alloy (A380) droplets on top of
each other. A pneumatic droplet generator was used to create uniform, 0.8 mm diameter,
molten aluminum droplets. The droplet generator was mounted on a stepper motor and
moved constantly so as to maintain a fixed distance between the generator nozzle and the
tip of the column being formed. The primary parameters varied in experiments were those
found to have the strongest effect on bonding between droplets: substrate temperature
(250-450°C) and deposition rate (1-8 Hz). Droplet temperature was constant at 620° C.
To achieve metallurgical bonding between droplets, the tip temperature of the column
should be maintained slightly below the melting temperature of the alloy to ensure re-
melting under an impacting drop and good bonding. The temperature cannot exceed the
melting point of the metal; otherwise the column tip melts down. The temperature at the
bottom of a column was measured while droplets were being deposited. An analytical
one-dimensional heat conduction model was developed to obtain the transient tempera-
ture profile of the column, assuming the column and the substrate to be a semi-infinite
body exposed to a periodic heat flux. From the model, the droplet deposition frequency
required to maintain the tip temperature at the melting point of the metal was

calculated. [DOI: 10.1115/1.3156782]

Keywords: droplet deposition, remelting, droplet-based manufacturing, aluminum

droplet

1 Introduction

Rapid prototyping technology is used to fabricate solid objects,
without using special tooling, molds, or dies, by depositing layers
of the material in a controlled pattern. Being first developed in the
1980s, rapid prototyping techniques have been used in a wide
range of applications to produce models and prototypes from vir-
tual computer designs. A large number of competing technologies
are now available in the marketplace, such as stereolithography,
selective laser sintering, fused deposition modeling, laminated ob-
ject manufacturing, and multijet modeling. All are additive tech-
nologies that create parts by applying the materials, layer by layer,
in the form of liquid, powders, or sheets [1]. Some of these tech-
nologies can be used to directly manufacture parts that are re-
quired in small volumes [2].

Droplet-based manufacturing is an important branch of rapid
prototyping technology, in which the material is melted, formed
into small droplets, and deposited onto a moving substrate to fab-
ricate three-dimensional components. Gao and Sonin [3] modified
an inkjet printer head to dispense wax droplets in a predetermined
pattern. Other researchers have used various droplet deposition
techniques to build three-dimensional objects using polymers [4]
or ice [5,6].

Parts made from nonmetallic materials are suitable for demon-
stration, test fit in assemblies, and as patterns to prepare molds for
casting metal parts. Several experimental metal-droplet-based
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rapid prototyping systems have been developed in recent years to
fabricate functional parts. Amon et al. [7] termed their technique
“shape deposition manufacturing” in which a feedstock wire was
located directly over the substrate and was melted using a plasma-
welding torch. Droplets of 1-10 mm in diameter detached from
the tip of the wire and fell onto a substrate whose movement was
controlled, allowing the fabrication of objects through consecutive
deposition of molten metal droplets. Orme and Huang [8] devel-
oped an alternate system termed precision droplet-based net-form
manufacturing in which a stream of approximately 100 wm diam-
eter droplets was generated by vibrating a molten metal jet,
emerging out of a fine nozzle. Droplets were charged as they
passed through a ring electrode and then deflected in an electric
field applied such that droplets were delivered at the desired loca-
tion on a substrate. Tseng et al. [9] developed a similar system.
To better understand the dynamics of individual molten metal
droplets landing on a substrate, a number of experimental, ana-
Iytical, and numerical studies have been carried out [10-15].
Much less work has been done on the interaction of droplets,
landing sequentially on a surface and fusing with each other. Ha-
ferl and Poulikakos [16,17] conducted experiments and numeri-
cally modeled the deposition of two molten solder droplets, one
on top of the other, and determined the effects of fluid mechanics
and heat transfer during an impact on the final droplet shape. Xu
et al. [18] numerically investigated the thermal behavior during a
succession of droplets impinging onto a solid surface in the pro-
cess of spray atomization and deposition. Ghafouri-Azar et al.
[19] studied, using experiments and a numerical model, the im-
pact of a molten tin droplet on a previously deposited and solidi-
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Fig. 1 Schematic diagram of the experimental apparatus

fied drop. Fang et al. [20] built columns by depositing up to 200
tin droplets on top of each other and determined conditions under
which the droplets fused together well.

To fabricate freestanding sections of metal by depositing mol-
ten metal droplets, it is essential to achieve metallurgical bonding
between metal droplets. When compared with wax or polymers,
molten metals have much higher values of surface tension, melt-
ing temperature, latent heat of solidification, and thermal conduc-
tivity. If the temperature at the interface between the existing col-
umn and impinging droplet is too low, droplets will bounce off; if
it is too high they will not solidify but flow down. There is a fairly
narrow window of operating parameters in which metal droplets
fuse together and solidify sufficiently and rapidly after impact to
form a part.

In this paper, experiments are described in which molten alu-
minum alloy droplets (0.8 mm in diameter) were sequentially de-
posited on top of each other to produce vertical columns. Param-
eters varied included substrate temperature (250-450°C) and
deposition frequency (1-8 Hz). The temperature at the base of the
column was measured while it was being built. The thermal his-
tory of the column was modeled by assuming the column and the
substrate to be semi-infinite solids exposed to a periodical heat
flux. The objective of this study was to determine conditions un-
der which molten metal droplets can fuse together and form a
vertical column.

2 Experimental Procedure

Figure 1 is a schematic diagram of the experimental apparatus
used to deposit molten aluminum droplets. Primary components
of the system were a droplet generator, translation stages (XYR-
1010 and LM-600, Danahar Precision Motion, Chicago, IL), and
the control system. More details have been given earlier [20].

A pneumatic droplet generator was used to produce molten alu-
minum alloy droplets on demand (A380 die casting alloy, Al:
89%, Cu: 4%, Fe: 1.3%, Mg: 0.1%, solidus temperature of
540°C, and liquidus temperature of 590°C). A synthetic sapphire
nozzle with an opening of 0.355 mm (0.014 in.) in diameter was
used to produce single aluminum droplets of 0.8 mm in diameter.
Cheng et al. [21] gave a detailed description of the droplet gen-
erator.

Oxidation of molten metal, as it emerged from the nozzle, has a
very strong effect on droplet formation. A previous research pub-
lished [22] shows that oxidation reduces the surface tension of
liquid tin and greatly increases its viscosity, hindering molten tin
jet break-up and increasing the diameter of droplets ejected from
the droplet generator. Similar effects were also present in the gen-
eration of molten aluminum droplets. To prevent oxidation as
molten metal droplets emerged from the nozzle, inert gas (N,)
was supplied directly to a small enclosed area surrounding the
nozzle, maintaining an inert atmosphere. Gas flow was adjusted so
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as to eliminate oxidation while minimizing the influence on the
trajectory of droplets. The inert gas flowed out of this enclosed
space through the hole in the bottom of the droplet generator
through which the droplet emerged.

The droplet generator was mounted on the single-axis motion
stage so that it could move vertically, while an aluminum plate
(50x50%x 12.5 mm®) was mounted on the x-y stage so that it
could be moved in the horizontal plane. Electronic pulses were
sent through the computer’s printer port to trigger the droplet
generator to eject a droplet. By synchronizing droplet generation
with the motion of the stages, droplets can be deposited at desired
locations on the substrate. The droplet generator was elevated af-
ter a layer of material was deposited so as to maintain a constant
distance of approximately 5 mm between the top surface of the
material deposited and the droplet generator.

Two experimental parameters varied in the experiments: droplet
deposition rate and substrate temperature. The initial droplet tem-
perature was held constant at 620°C in all tests. Substrate tem-
perature varied from 250°C to 450°C, and the droplet generation
frequency from 1 Hz to 8 Hz.

The temperature variation at the bottom of the columns while
they were being built was measured using a K-type (chromel-
alumel) thermocouple (0.025 mm, 20 ms response time, TT-K-40-
SLE, Omega Inc., Stamford, CT). The thermocouple was posi-
tioned on the substrate surface and droplets were deposited on top
of it. As droplets landed sequentially on top of each other and a
column was built up, the thermal history at the bottom of the
column was recorded in real time by a data acquisition system
(DAQpad-6020E, National Instrument, Austin, TX). The accuracy
of the thermocouples used for measuring temperatures was
+1°C. To ensure repeatability, tests were repeated three times for
each set of experimental parameters, and the temperature at the
bottom of the column was measured and found to change by less
than 10°C for consecutively recorded temperature profiles.

3 Results and Discussion

To build functional parts, it is essential to ensure metallurgical
bonding between droplets. However, as droplets land on each
other, the rate of heat transfer determines the strength of the bonds
formed. Figure 2 shows a 28 mm long column, fabricated by
dispensing 50 aluminum droplets at a rate of 2 Hz on a copper
substrate held at 200°C. It can be seen that droplets in the upper
portion of the column completely coalesced, while those at the
lower portion of the column retained their spherical outline. This
transition from partial to complete fusion indicates that the tem-
perature at the tip of the column, on which impinging droplets
land, increases as the column becomes longer. Thermal resistance
to heat conduction from the molten droplet landing on the tip of
the column to the substrate increases with column length. Com-
plete coalescence of droplets at the upper portion due to higher tip
temperature led to good metallurgical bonding between droplets,
while droplets at the lower portion were bonded only through
partial melting or mechanical interlock.

To investigate the effect of process parameters on the formation
of a column, experiments were conducted in which 20 aluminum
alloy A380 droplets (average diameter of 850 wm) were dis-
pensed at one of the four different frequencies (1 Hz, 2 Hz, 4 Hz,
and 8 Hz) on an aluminum substrate at varying temperatures
(250°C, 350°C, and 450°C) to build a column. Initial droplet
temperature was 620°C in all experiments. Columns that were
successfully fabricated were collected and photographed, as
shown in Fig. 3. At combinations of low deposition rates and
substrate temperatures, in the upper left portion of Fig. 3, droplets
did not fuse to form columns but instead bounced off the surface
of the first solidified droplet. Attempts to build up a column with
those process parameters were unsuccessful. Comparatively good
fusion between droplets was achieved at a substrate temperature
of 250° C when the deposition rate was greater than 4 Hz or 8 Hz.
When the substrate temperature was increased to 350°C, a col-
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Fig. 2 A column built with 50 droplets deposited at a rate of 2
Hz on a substrate at 200°C. Scale markings are 0.5 mm apart.

umn could be fabricated with a lower deposition rate of 2 Hz. It
was possible to build a column with 1 Hz deposition rate by
increasing the substrate temperature to 450°C. However, the col-
umns built at a substrate temperature of 450°C did not stand
vertically but bent over, since droplets did not freeze rapidly
enough after impact but remained in liquid phase long enough to
flow down the side of the column. On a substrate at 350°C, the
height of the column decreased as the droplet frequency increased.
As the droplet deposition rate increases, the tip of the column
heats up more and droplets flatten out and spread more upon im-
pact. The resulting columns therefore have greater diameter and
lower height.

Deposition Rate (Hz)

1Hz 2Hz 4 Hz

250°C
No Fusion No Fusion
No Fusion

Substrate Temperature (°C)
350°C

450°C

Fig. 3 Columns built by depositing 20 droplets. Substrate tem-
perature and deposition rates were varied. Scale markings are
0.5 mm apart.
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Fig. 4 Temperature variation at base of columns being built by
depositing 20 droplets. Substrate temperatures were 250°C,
350°C, and 450°C, respectively, and the deposition rate was 4
Hz for all cases.

To achieve metallurgical bonding between the droplets depos-
ited, it is necessary that the impinging droplets fuse with the so-
lidified material at the column tip. Therefore, the column tip tem-
perature is crucial to the fusion of droplets deposited. The tip
temperature is not constant but changes as molten droplets land on
it and then cool. To investigate the effect of changing substrate
temperature and deposition rate on the temperature variation
within a column, the transient temperature at the bottom of a
column was measured in real time as it was being built.

Figure 4 shows a set of temperature measurements at the bot-
tom of the columns at substrate temperatures of 250°C, 350°C,
and 450°C, respectively, while droplets were deposited at the
same rate of 4 Hz. Time t=0 corresponds to the impact of the first
droplet. The thermocouple did not contact the substrate surface
well prior to the arrival of the first droplet, so its temperature was
lower than that of the substrate. The first droplet landing and
solidifying on the thermocouple bonded it to the aluminum sub-
strate. Subsequent droplets landing on top caused the temperature
to rise and then decrease as the droplet cooled. The amplitude of
the fluctuations decreased as the column became taller, and the
distance between the thermocouple at the bottom of the column
and impinging droplets increased. Eventually, the base tempera-
ture stabilized at a near-constant value. It is evident that a higher
substrate temperature led to a higher bottom temperature when the
deposition rate was identical. Increasing substrate temperature
from 250°C to 450°C increased the column base temperature by
approximately 60°C.

Increasing droplet deposition frequency also increased the col-
umn temperature. Figure 5 shows the column base temperature
measurements on a substrate at 350°C, for deposition rates of 2
Hz, 4 Hz, and 8 Hz. The steady-state temperature increased by
20°C as deposition frequency was raised from 2 Hz to 8 Hz.

During deposition of droplets on top of each other, the thermal
energy carried by each droplet was dissipated into the deposited
material and the surrounding. Under typical experimental condi-
tions in these tests, (substrate temperature of 250-450°C, ambi-
ent temperature of 520°C, droplet temperature of 620°C, and
droplet impact velocity of 1.5 m/s), convective heat transfer was
estimated to be less than 10% of the energy conducted to the
deposited material and was neglected.

To develop a model of heat transfer in the column being built,
all droplets were assumed to have the same size and properties
when impinging on the tip of the column (Fig. 6). Other simpli-
fying assumptions made are as follows:

1. Each droplet after impingement flattens into a disk. The
spreading time (a few milliseconds) is much less than the
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Fig. 5 Temperature variation at the base of columns being
built by depositing 20 droplets. The deposition rates were 2 Hz,
4 Hz, and 8 Hz, respectively, and the substrate temperature was
350°C for all cases.

time interval between consecutive droplet impact (125-1000
ms).

2. Heat conduction between an impacting droplet and the ex-
isting column is one dimensional.

3. There is no interfacial thermal contact resistance between
droplets or between droplets and the substrate.

4. The initial temperature of a droplet prior to impingement is
uniform and equal to 620°C.

Assuming the column and the substrate to be a semi-infinite
solid system, the heat conduction in the solid is governed by Fou-
rier’s equation,

IaT(xt) _ FT(XY) e
T Y 2 0=x<o, t>0 (1)
by initial condition,
T(x,0) =Tgp, t=0 (2)
and by boundary conditions,
T(oo,t) = Tgyp, X=00 (3)
droplet ©)
Tdrp s d’ f o
a(t)
0 LM 00
% ;
Column

x| |}/

substrate 7,

Fig. 6 Geometry of heat conduction model
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JaT(x,t)
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where q(t) represents a periodically varying surface heat flux that
is produced by the thermal energy carried by impinging droplets
being dissipated into the solid. Denoting the deposition rate by f,
the heat flux can then be represented by periodic pulses with pe-
riod ty=1/f, and a pulse width of t, representing the time for the
release of the thermal energy.

The pulse width t, can be estimated based on the three impor-
tant time scales after a droplet impacts onto a substrate: (1) time to
lose its superheat 7, (2) time to remove its latent heat 7, and (3)
time to cool down to target temperature 3. In our analysis, the
pulse width t, is equivalent to the postimpact solidification time
75, Which is equal to 2(7;+ ) and is given by [3]

d? k T,—-T k L
tp:——<ln<u>+<l+—t>—> (5)
Bak, Toie=Ta 2k/ (T~ Ta)

The postimpact solidification time increases as the substrate tem-
perature increases. Typically, the solidification time is of the order
of magnitude ranging from 10 ms to 100 ms when the initial
substrate temperature ranges between 200°C and 500°C.

The one-dimensional coordinate system is illustrated in Fig. 6.
The origin x=0 is set at the tip of the column and extends down-
wards. As the column becomes larger, the origin of the coordinate
system moves at a rate equal to the average growth rate of the
column

-k qt), x=0 4)

t
1 1
x(t)=—ff-s-tdt:—t-f-s (6)
t), 2

where t is time and s is the splat thickness, which is of the same
order of magnitude as the droplet diameter d under aforemen-
tioned typical experimental conditions. In our calculations, the
droplet diameter was used to estimate the average growth rate.

The surface heat flux q(t) is a periodic series of pulses that can
be approximated by a Fourier series

A(t) = o + 2 da(Mcosnagt) + X, gy(msin(negt) — (7)
n=1 n=1
where qq is the average heat flux, and wy=27/t, is the frequency.
The thermal energy of an impacting droplet per unit mass, E,
includes the superheat and the latent heat of fusion E=L’
+C(Tgp—Tmip). Assuming the contact surface area A= (/ 4)d?, the
amplitude of the heat flux g, is estimated by

qA'tp'A:p'T'E (8)

Then, qg, which is the average value of the periodically applied
heat flux, is

1 t
%=—fq®m=£% (9)

One can also obtain expressions for the coefficients of the sinu-
soidal terms:

fo
ga(n) = gf q(t)cos(nawot)dt = q—Asin<t£2n7-r) (10)
to 0 nm tO
2 " t
gp(n) = —f q(t)sin(nwyt)dt = q—A(l - cos<£2nw)) (11)
tO 0 nm to

The general solutions to problems involving a periodic heat flux
boundary are provided in a number of references, including
Carslaw and Jaeger [23], Myers [24], and Osizik [25]. The solu-
tion to governing Fourier’s equation is
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Note that the expression of T(x,t) is an infinite series. In practice,
n=>50 terms offer a good approximation of q(t) and were used in
computations.

Using the model developed above, the temperature history at
the bottom of the column, where the thermocouple was placed in
experiments, can be calculated. Figure 7 shows a comparison of
the measured temperature at the bottom of a column and the cal-
culated temperature variation for 450°C substrate temperature
and 8 Hz deposition rate. It can be seen in Fig. 7 that the tem-
perature measured rapidly increased to about 590° C after the first
droplet impacted. As more droplets arrived, the deposited material
experienced several reheating/cooling cycles, indicated by the
fluctuations in the temperature measurement curve. The curve
eventually flattened out, and a stable temperature of about 570°C
was reached. The predicted temperature showed several rapid
fluctuations before it stabilizes at approximately 580°C after 1 s.
The amplitude of the measured fluctuations was much less be-
cause of the relatively slow response time (~20 ms) of the ther-
mocouple used. As the distance between the thermocouples and
impacting droplet increased, the lag in response of the thermo-
couple also increased, making it difficult to detect fast transients.

The solidified portion of a column would have to remelt under
an impinging droplet to create a good metallurgical bond. For
small times after impact, a single droplet and the deposited mate-
rial can be assumed to behave as semi-infinite bodies. Neglecting
interfacial resistance, the interface temperature T;y is [26]

_ Ttip ' (\k ' c)tip + Tdrp -(Vk- C)drp
int — . _
; (V- O)p + (V- Carp)

where Ty, is the initial temperature at the tip of the column, Tgy, is
the initial temperature of the new incoming droplet, and k and ¢
are the thermal conductivity and specific heat, respectively. As-
suming that the interface temperature must be equal to the solidus
temperature of the alloy to ensure remelting, Fig. 8 shows combi-
nations of column tip temperature and droplet temperature calcu-
lated from Eq. (13). In the case of an impinging droplet at an

(13)
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Fig. 8 Variation of Ty, with Ty, assuming that T, equals the
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initial temperature of 620°C, remelting of the previously depos-
ited material occurs when its surface temperature exceeds 480°C.

We can predict conditions under which remelting will occur by
combining predictions of column tip temperature from Eq. (12)
with the remelting condition of Eq. (13). Figure 9 shows tip tem-
perature histories of columns as a function of the column length
for substrate temperatures of 250°C, 350°C, and 450°C, with 1
Hz deposition rate. At Tg,,=450°C, the tip temperature monotoni-
cally increases as the column grows taller. It reaches 480°C, the
critical remelting temperature at 1.5 mm and the solidus tempera-
ture (540°C) at 5 mm, and then asymptotically approaches toward
the initial droplet temperature (620°C). Inspecting the corre-
sponding sample column shown in Fig. 3(a) at a substrate tem-
perature of 450°C, we can see that the droplets began partially
fusing together at a height of about 1 mm high, which indicated
that remelting took place. The tip temperature was higher than
480° C above this point, allowing subsequent droplets to fuse to-
gether. However, for T,,=350°C and Tg,,=250°C, the tip tem-
perature always remained under 480°C (see Fig. 9), and we were
unable to build columns in experiments under these conditions
(see Fig. 3). Droplets deposited in experiments bounced off rather
than bonding together.

Figure 10 shows the tip temperature predictions for substrate
temperatures of 250°C, 350°C, and 450°C, respectively, while
the deposition rate increased to 2 Hz. For Tg,,=250°C, we can
see that the tip temperature still remained under the critical re-
melting temperature, which was not high enough for the droplet to
fuse together and form the desired column. As a result, we were
not able to fabricate the column with the combination of 250°C
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400
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200 Il 1 1 1 1 Il 1 Il 1 J
o 1 2 3 4 5 6 7 8 9 10

Column Length (mm)

|

Tip Temperature (°C)

Fig. 9 Predicted variation of tip temperatures during growth of
columns at substrate temperatures of 250°C, 350°C, and
450°C. The deposition rate was 1 Hz for all cases.
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Fig. 10 Predicted variation of tip temperatures during growth
of columns at substrate temperatures of 250°C, 350°C, and
450°C, respectively. The deposition rate was 2 Hz for all cases.

substrate temperature and 2 Hz deposition rate. Comparatively,
remelting could take place within 5.5 mm and 1 mm for Tg,
=350°C and 450°C, respectively, at 2 Hz deposition rate, as in-
dicated in Fig. 10, and columns were successfully built up under
these conditions (see Fig. 3).

Increasing the deposition rate of droplets increases the column
tip temperature and promotes droplet remelting at a lower posi-
tion. Figure 11 shows tip temperatures for 1 Hz, 2 Hz, 4 Hz, and
8 Hz deposition rates, respectively, with Tq,,=450°C. The corre-
sponding remelting locations were predicted to be approximately
1.4 mm, 0.9 mm, 0.6 mm, and 0.5 mm high above the substrate
surface, respectively, where the tip temperature reached the criti-
cal temperature. This trend can be clearly seen through the column
samples shown in Fig. 3 for Tg,,=450°C. However, too high
deposition rate may cause droplets to remain liquid and not freeze
sufficiently and rapidly. At a deposition rate of 8 Hz, the tip tem-
perature rose to solidus temperature at a height of about 1.6 mm,
leading to complete fusion of the droplets deposited. Inspecting
the photograph of the column sample shown in Fig. 3(d) at Tg,
=450°C, droplets deposited began completely coalescing within 1
mm from the bottom of the column. However, the temperature of
the column tip soon exceeded the liquidus temperature of the al-
loy, above which it remained liquid. The column in Fig. 3(d)
appears curved, showing that the droplets did not remain attached
to the point of impact but flowed down the side.
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Fig. 11 Predicted variation of tip temperatures during growth
of columns at droplet deposition rates of 1 Hz, 2 Hz, 4 Hz, and 8
Hz, respectively. The substrate temperature was 450°C for all
cases.
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4 Conclusions

Molten aluminum droplets landing sequentially on top of each
other can be fused together in order to form vertical columns. To
ensure good metallurgical bonding between an impacting metal
droplet and a solidified column, the tip of the column should be
maintained near the melting point of the metal (solidus tempera-
ture for an alloy) to ensure that remelting occurs. If the tempera-
ture is much lower than the melting point, droplets will fail to fuse
with it; if it is too high, the liquid flows away from the point of
impact. Two parameters that have a large influence on column
temperature are the substrate temperature and droplet deposition
rate. The transient temperature profile of the column was obtained
by modeling the column and the substrate as the semi-infinite
solid exposed to a pulsating heat flux. The tip temperature of a
column constantly increases as it grows. It must exceed the soli-
dus temperature for fusion to occur. However, if the tip tempera-
ture exceeds the liquidus temperature, the column may not remain
straight since droplets do not freeze upon impact.

Nomenclature

A = area (m?)
= energy per unit mass (J/g)
= latent heat of fusion (J/g)
= temperature (K)
specific heat (J/g K)
diameter (m)
frequency (Hz)
thermal conductivity (W/m K)
heat flux (W/m?2)
time (s)
= splat thickness (m)
= X coordinate (m)

nw e~ x 00 M m
Il

>

Greek Symbols
a = thermal diffusivity (m?/s)
p = density (kg/m?®)

Subscripts
p = pulse
drp = droplet
int = interface
sub = substrate
mlt = melting

tip = column tip
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Convective Heat Transfer for
Water-Based Alumina Nanofluids
in a Single 1.02-mm Tube

Nanofluids are colloidal solutions, which contain a small volume fraction of suspended
submicron particles or fibers in heat transfer liquids such as water or glycol mixtures.
Compared with the base fluid, numerous experiments have generally indicated an in-
crease in effective thermal conductivity and a strong temperature dependence of the static
effective thermal conductivity. However, in practical applications, a heat conduction
mechanism may not be sufficient for cooling high heat dissipation devices such as mi-
croelectronics or powerful optical equipment. Thus, thermal performance under convec-
tive heat transfer conditions becomes of primary interest. We report here the heat transfer
coefficient h in both developing and fully developed regions by using water-based alu-
mina nanofluids. Our experimental test section consists of a single 1.02-mm diameter
stainless steel tube, which is electrically heated to provide a constant wall heat flux. Both
pressure drop and temperature differences are measured, but mostly here we report our h
measurements under laminar flow conditions. An extensive characterization of the nano-
fluid samples, including pH, electrical conductivity, particle sizing, and zeta potential, is
also documented. The measured h values for nanofluids are generally higher than those
for pure water. In the developing region, this can be at least partially explained by Pr
number effects. [DOI: 10.1115/1.3133886]

Keywords: nanofluid, nanofluid characterization, forced convection, laminar flow

1 Introduction

In recent years, technology development has intensified with
the understanding of the physics behind microscale and nanoscale
domains. The unprecedented growth in electronics, optical de-
vices, power stations, transportation, etc., has led to a number of
applications requiring high heat flux dissipation. This trend is ex-
pected to continue unabated for the coming years. To dispel high
heat flux, heat transfer liquids such as water, glycol, engine oil,
and sodium play an essential part in many diverse industries.
However, the performance of these heat transfer liquids is often
narrowed by their low thermal properties. Recently, researchers
have shown considerable interest in using nanoparticles as addi-
tives to alter heat transfer fluids and their performance [1-11].

Fluids with suspended submicron-sized (<100 nm) particles or
fibers were named as nanofluids by Choi [1] in 1995. Since then,
researchers have attempted to understand and predict the behavior
of nanofluids. Compared with base fluids, a number of recent
experiments have indicated dramatic improvements in effective
static thermal conductivity, and the effective static thermal con-
ductivity depends on the concentration of nanoparticles [1-5]. On
the contrary, groups that adopt optical measurement methods [6,7]
debated the significant enhancement of nanofluids. Putnam et al.
[6] observed that the effective static thermal conductivities of Au-
based nanofluids were independent of particle loading. Further-
more, measurements on monodisperse polymer suspensions by
Rusconi et al. [7] did not show an anomalous increase in thermal
conductivity, but rather followed the classical models for the ef-
fective properties of composite media. By virtue of the large num-
ber of ongoing investigations, a few groups were able to collect
and review published reports on nanofluids [12-16]. Keblinski et
al. [12] focused their review on thermal transport in stationary
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fluids or the understanding and controversy concerning nanofluid
static thermal conductivities. Das et al. [13], Wang and Mujumdar
[14], and Trisaksri and Wongwises [15] reviewed the literature of
general heat transfer characteristics of nanofluids. Daungthogsuk
and Wongwises [16] conducted their review that emphasized nu-
merical approaches describing nanofluid convection performance.
All of these reviews point out several deficiencies on current
nanofluid research: (i) no essential agreement between results
from different research groups, (ii) poor or no characterization of
nanofluids, and (iii) a shortage of theoretical knowledge of ther-
mal transport mechanisms in nanofluids. Consequently, doubts
were raised on nanofluids as future cooling media, making it par-
ticularly necessary to investigate convection heat transfer with
nanofluids.

Back in 1975, Ahuja [17,18] presented the details of thermal
conductivity and heat transfer coefficients of polystyrene water-
based solutions in laminar flow. It was shown that, without sig-
nificantly increasing the friction factor for the flow, the effective
thermal conductivity of the colloidal solution was improved by as
much as a factor of 2. Also, as the Reynolds number and particle
concentration increased, so did the enhancement in the effective
thermal conductivity of the suspension. Even with this empha-
sized melioration of the thermal conductivity of the base fluid, the
utilization of suspensions as heat transfer fluids was not adapted
for micron-sized dispersed particles. The particles were not stable
and were tended to settle out of suspension due to their weight.
Therefore, liquids consisting of such coarse-grained particles were
not yet widely applied as alternative coolants.

Experimental research on the convective heat transfer perfor-
mance of nanofluids can be traced back to 1998 [19]. It is remark-
able that there are still only relatively few publications of such
[19-29]. Table 1 summarizes the nanofluid information, which
was used by each of these groups [19-28] in their experimental
investigations. Note that since Lee et al. [29] did not report the
measured heat transfer coefficient or Nusselt number, those results
were not provided in Table 1. The information includes the par-
ticle size and geometry, particle material, nanofluid volume frac-
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Table 1 Summary of recent convection measurements on nanofluids

Compared measured data

Particle Flow regime with Nu=4.36, D-B equation,”
Ref. size/geometry Nanofluids (Re) or H,0 data°
[19] 13 nm/spherical v-Al,03+H,0 10%-10° NUpeasured > NUp_g
27 nm/spherical TiO,+H,0
[20] <100 nm/N/A Cu+H,0 10%-2.5 % 10* NUpeasured > NUp._g if ¢>0.5%
[21] 27-56 nm/spherical v-Al,05+H,0 500-2000 NUneasured = 4-36
[22] >100 nm/rodlike CNT+H,0 800-1200 P> N0
[23] 20 nm/spherical TiO,+H,0 2000-8000 Rae>hio
Graphite+commercial automatic
d:1-2 wm and transmission fluid or mixture of
[24] 8:20-40 nm/disklike two commercial oils with additives 5-80 hnt> Npase fluia
[25] 50-60 nm/N/A Cu+H,0 650-2050 N/A
[26] gg nm/spt&e;j;al ; v-AlL,O3+H,0 700-2050 Nar>MNi,0 and Nupessurea > NUio
nm an nm
[27] Is%rz)erical S w20 Al,03+H,0 4000-1.6x 10* hpe>N0 and Nupeasurea ™ NUio
:80 nm and w:20 nm .
[28] needle Cu+H,0 V=10, 15, and 20 ml/min° performance ;> performanceHzo

2Analytical solution for constant wall heat flux in the laminar flow region.
PDittus—Boelter equation for transient or turbulent flow region.

°If the authors did not compare their data with any theoretical prediction.
Did not provide pure water data.

°Re numbers were not provided.

tion ¢, and the test flow region during experiments. The last col-
umn in Table 1 shows that the measured Nusselt number Nu were
greater than or equal to Nu=4.36 (analytical result for laminar
flow) or the predictions from the Dittus—Boelter correlation (em-
pirical solution for turbulent flow). In addition, if the authors did
not provide comparisons between theoretical predictions and their
experimental data, the comparison of their measured nanofluids
data with the base fluids is reported. Most of the above researches
were contributed to relative high Re within large diameter test
tubes. More details can be found in Ref. [30].

The main intention of this research is to extend the scope of the
measured convective heat transfer behavior of aqueous
Al,O3-based nanofluids. The focus will be on the convective heat
transfer capability of nanofluids in a millimeter-scale tube in the
laminar flow regime.

2 Experimental Setup

2.1 Apparatus. An experimental setup was designed and as-
sembled to permit measurements and analysis of heat transfer in
both the thermally developing flow region and in the thermally
fully developed flow region as shown in Fig. 1. The experimental
system included one sample tank, a calibration tank, a pump, a
test section, a gauge pressure transducer, a differential pressure
transducer, a heating jacket, a cooling jacket, connecting piping,

Heating
jacket
to = =
=
11
2
]
Lnf2 ] \a
/N
I Cooling
jacket
Sample & bubble  Calibration
collection tank tank

Fig. 1 Experimental apparatus sketch
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and a single 1.02-mm inner diameter and 50-cm long straight
stainless steel tube (AISI 316) that served as the test section. The
test tube was heavily insulated by wrapping it in a fiberglass blan-
ket then sandwiching it between two 2-in. thick calcium silicate
boards. The portions upstream and downstream of the test section
were another two 10-cm long stainless steel tubes, which had the
same inner diameter and were insulated in the same way as the
test section. The connections between these 10-cm long tubes and
the test section also had an inner diameter of 1.02 mm. Based on
the flow rates measured in our experiment, the 10-cm long up-
stream section was sufficient to produce hydraulically fully devel-
oped flow at the entrance of the test section.

A polyimide-coated nichrome heater wire (Lakeshore NC-32)
was adopted to supply a constant heat flux condition along the test
section. The nichrome wire was wrapped around the tube in a
noninductive manner to avoid magnetic effects during experi-
ments. The noninductive wrapping is done by doubling the heater
wire and then winding the test tube like a solenoid (Fig. 2). There-
fore, at every point along the wire there are equivalent currents
passing in both directions, thus roughly canceling out any induced
magnetic field. The nanofluids were driven by a low pressure mi-
croannular gear pump (Micropump Inc., Model 2521) over a vol-
ume flow rate capacity of 0.15-9 ml/min. The volume flow rates
during the experiments were controlled by a computer through a
controller provided by Micropump Inc. The pressure difference
across the hydraulically fully developed flow test section was
measured by a differential pressure transducer (Setra Inc., Model
230). The input power was confirmed by a digital multimeter. Two
T-type thermocouples were inserted into the flow field to measure
the nanofluid mean entrance and exit temperatures. Other T-type
thermocouples were mounted on the test tube wall as sketched in
Fig. 2. The staggered separation of the thermocouple locations
was used to carefully monitor the temperature profile in the en-
trance region.

134

1) XC.OJ 644 1012 1all IEs2 2150 mm Al AR90

1 i 1 i 1l i 1 iU 11 W] 1l gunl 0yl 11

|11t-I

Fig. 2 Sketch of heater wire and thermocouple locations
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Fig. 3 SEM image for 20-nm dry Al,O; nanopowder

2.2 Nanofluids Preparation. We chose the two-step tech-
nique as our nanofluids preparation method because the method
works well for oxide nanopowders [14]. In this method, the nano-
particles are dispersed in a base fluid by ultrasonification. The
nanoparticles we used were purchased from Nanostructured and
Amorphous Materials, Inc. The main test samples were 20-nm
v-Al,O5 nanoparticles in de-ionized (DI) water. The y-Al,0;
nanoparticles have 99.97% purity and a specific surface area of
180 m?/g. Starting from a desired volume fraction value, the cor-
responding mass of y-Al,O3 nanoparticles was calculated and
weighed. Finally, the corresponding volume of the base fluid was
measured, and the nanoparticles were dispersed into the base fluid
via ultrasonification. The ultrasonification (model UP200S from
Dr. Hielscher, GmbH) was carried out for 1 h to break up any
potential clusters in the dry nanoparticle powder. After ultrasoni-
cation, the nanofluids were rested at room temperature for 1 h to
eliminate any heating effects from the ultrasonification. The vol-
ume fractions of the test samples were 0.5%, 0.75%, and 1%.
There was no surfactant used in any of the samples reported here.

2.3 Nanofluids Characterization. Even though there was no
official standard introduced for characterizing nanofluids, some
parameters have become quite common among the research
groups working with nanofluids. Those parameters are the size
and shape of nanoparticles or agglomerates, pH, electrical con-
ductivity (o), and zeta potential within the nanofluids. The dry
20-nm Al,O3 nanoparticles picture was taken using scanning elec-
tron microscopy (SEM) as shown in Fig. 3. The nanoparticle
mean diameter of 20 nm was reported by the manufacturer, but
Fig. 3 shows some aggregate sizes near 150 um in the dry nan-
opowder. When dispersing Al,03 nanoparticles into DI water, the
particle surface can acquire electric charge by absorbing or des-
orbing protons at the particle/liquid interface, since DI water is a
polar medium [30,31]. This absorbing and desorbing mechanism
forms two layers that surround the particle surface. The inner
region is the stern layer where the ions are strongly attached to the
particle surface, and for the diffused layer, which is the outer
layer, the ions are not that firmly bound. The potential at this
electrical double layer (EDL) boundary is known as the zeta po-
tential. The zeta potential and the thickness of the EDL are
strongly dependent on the pH value. The pH values were mea-
sured by a pH meter (Hach EC10). In the presence of the EDL,
the o of a suspension can be increased due to the surface conduc-
tivity of the particles in the EDL region. The nanofluids’ o values
were measured using a Hach CO150 conductivity meter.

Journal of Heat Transfer
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Fig. 4 Example of a good power spectrum during zeta poten-
tial measurements for determining nanofluid concentrations
for DLS measurement. The curve having a peak at 0 Hz is the
reference spectrum while the other curve is the sample
spectrum.

The particle size and zeta potential in the nanofluids were mea-
sured by a dynamic light scattering (DLS) instrument from Par-
ticle Sizing Systems, Inc. (Nicomp 380/ZLS). To perform the size
and zeta potential measurements using the DLS system, diluted
samples were required. We determined the appropriate dilution
based on the power spectrum (as shown in Fig. 4) during the zeta
potential measurements. The diluted sample concentration for
both the size and zeta potential measurements was 0.0006 vol %.
In other words, three dispersions with volume fractions of 0.5%,
0.75%, and 1% were first prepared, and then all three samples
were diluted to 0.0006 vol %. After dilution, the zeta potential
measurement was carried out before the size measurement.

3 Data Analysis

Figure 5 shows the cross-sectional view of the tube. In order to
avoid any unwanted uncertainty from thermal conductivities of
nanofluids, Nu values are not reported in this work. Instead, we
report the local heat transfer coefficient h(x) obtained by

q!/
h(X) = —————— )
Tu(X) = Tie(%)
where q” is the constant heat flux generated by the nichrome
heater wire

,_Q_ 1V
" A, wDiL

where | is the measured current, V is the supplied voltage, and L
is the heating length.

q (2)

Tw(x)

w (X)
Tad(x)

T

Fig. 5 Cross-sectional view of test tube (not drawn to scale)
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T,,(x) is the inner wall temperature calculated from the steady
one-dimensional heat conduction equation in cylindrical coordi-

nates [32], that is,
1d/ dT
——|r— =0 3

rdr( dr) @

with constant heat flux boundary condition at the wall
g (W m™2), hence the solution of T,,(x) becomes

Q i In(ro/ri)
27Lk;

where T,(x) are the local outer wall temperatures, which were
measured by T-type thermocouples mounted on the tube wall. r;
and r, are the inner and outer tube radii, respectively, and k; is the
thermal conductivity of the tube wall. Typical calculated tempera-
ture differences between the inner and outer walls ranged from
0.02°C to 0.05°C. The local fluid temperature T(x) is deter-
mined by an energy balance,

To(X) =Ty (x) = (4)

T = T+ —2— (5)

PriCrfV
where p is the nanofluid density, ¢ is the nanofluid heat capac-

ity, V is the nanofluid volumetric flow rate, and x is the axial
distance from the entrance of the test section. The nanofluid den-
sity and heat capacity are calculated by pn:=¢py+(1-¢)pp and
Cnt= @ppCp+ (1= @) ppCu/ ppr. Note that all nanofluid thermal prop-
erties are determined at the average temperature of the nanofluid,
which is justified here over the limited temperature range of our
experiments (20-45°C).

4 Calibration and Uncertainty Analysis

The microannular gear pump can maintain the accuracy of vol-
ume flow rate to +0.5%. The differential pressure transducer,
which has +0.25% accuracy, was calibrated by its manufacturer,
Setra. The T-type thermocouples were calibrated within a thermo-
stat distilled water bath and the accuracy can reach 0.1%. The
accuracy for the pH meter is £0.02 and +0.5% for the electrical
conductivity meter. Extraneous losses from the heater were esti-
mated to be less than 3%, based on measurements for pure water.

Each measured point on the result graphs represents the average
of the values obtained from three experimental runs. The uncer-
tainty of experimental data was estimated by the methods de-
scribed by Figliola and Beasley [33] and were calculated based on
95% confidence level. Student t-distribution used during the pre-
cision error calculation for the sample size is three.

5 Results and Discussion

5.1 Nanofluids Characterization. The pH and o values for
the original and the diluted samples were measured and are shown
in Fig. 6. The x-axis labels indicate the volume fractions of the
undiluted samples (i.e., the “original” samples), and the “diluted”
points represent the diluted samples, which were prepared from
the original samples. The results show that with increasing vol-
ume fraction, the pH has a peak at 0.75% for the original undi-
luted samples. However, for the diluted samples, the pH values
were close to 7.4—the base fluid pH. For the original undiluted
samples, the electrical conductivity data show an increasing trend
with increasing particle loading, but o for the diluted samples
reaches a peak at an intermediate volume fraction. The zeta po-
tential as a function of time after sonication is shown in Fig. 7 for
the diluted samples. The zeta potential for the 0.75% and 1%
volume fractions are at maximum at 20 min, and then decrease,
while the zeta potential for the 0.5% samples remains almost con-
stant around 47 mV. At this time, it is not clear why the zeta
potential for the higher-volume fraction samples reaches a peak

112401-4 / Vol. 131, NOVEMBER 2009
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Fig. 6 pH and o values versus volume fraction of the undi-
luted Al,O3-DI water nanofluids

and then declines.

In general, nanoparticle dispersions have a tendency to aggre-
gate due to attractive forces between the particles. Therefore, a
given dispersion is likely to exhibit several size distributions over
time as a result of different aggregation rates. The Nicomp 380/
ZLS is equipped with a software, which allows us to analyze
bimodal populations, and an example of which is shown in Fig. 8
for one of our samples. Figure 8 is a volume-weighted distribu-
tion, not an intensity-weighted result. Recognizing that larger par-
ticles generally scatter more light than smaller particles, using an
intensity-weighted distribution may lead to an opposite interpre-
tation of the particle size distribution.

The evolutions of the average aggregate size over time, in di-
luted samples, are presented in Figs. 9(a)-9(c). The vol % of each
aggregate size population is indicated on the y-axis in Fig. 9.
Figure 9(a) gives the results taken 60 min after sonication, Fig.

52 T
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Fig. 7 Zeta potential versus time after sonication for diluted
Al,O;-DI water nanofluids at different original (undiluted) vol-
ume fractions
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Fig. 8 An example of a particle size distribution measured
with the Nicomp 380/ZLS system. Screen shot is the particle
sizing result of diluted 20-nm y-Al,0; nanoparticles in DI water
taken 70 min after sonication. The distribution is generated by
the Nicomp volume-weighted model.

9(b) gives the results 10 min after Fig. 9(a), and Fig. 9(c) data
were taken after another 10 min. Comparing these three graphs, it
appears that the 0.5% nanofluid, in particular, manifests a stunning
size fluctuation over the measured 30-min time interval. The ex-
planation for this observation may be due to two issues. First, the
zeta potential—around 47 mVV—did not provide enough repulsive
force to avoid aggregation or weak flocculation. Thus, one may

100
£
£ £
£ & @
£ © e
50 @ * M
K3 3 0
& 3 2
2 B
0
o s0f——]
8
@
2
2
£
s
o
%5 40
20
[}
0.5% 0.75%
(a) Volume fraction (%)
100
E £
£ s £
«© d c
P 2 @
80 o +l <
c o ] *
=] N © @
K 2 3 a
- " *
5
o -
g 60
@
2
E2
£
5
3
-
© 40
@
E
=3
°
g
B
20
[
0.5% 0.75% 1%
(b) Volume fraction (%)

see mean aggregate diameters of 100.7 nm and 360 nm initially,
and then see three peaks 20 min later. Second, it might be due to
the suspiciously high ¢ as shown in Fig. 6.

5.2 Apparatus Validation. The experimental equipment for
measuring convection heat transfer was validated with pure water
by measuring the pressure drop (AP) and h across the test section.
The pressure drop results for pure water are provided in Fig. 10.
The measured data points agreed within 3% of the theoretical line;
therefore, the assumption of a steady laminar flow is valid. The
theoretical line for pure water is calculated by the Hagen-
Poiseuille’s law [34].

_128uLV
71'D;1

In the fully developed region with constant surface heat flux,
Nu has an analytical solution and is equal to a constant Nu
=4.364 [34]. The model of Kays and Crawford [34] for Nu(x) in
the developing region is frequently cited by many research groups
for laminar flow with constant heat flux boundary condition. The
theoretical solution for the local Nu number in the thermal en-
trance region in Ref. [34] is expressed as

1 Lg expl o)
Nu, 2 Ay

where Nu,,=4.364, x*=2x/D;/Re Pr, vy, and A, are correspond-
ing eigenvalues and constants, which are provided in Table 9-5 in

AP (6)

Nu(x) = (7)

m=1

|

344.7 +39.2 nm

337.1+39.6 nm

of particle size

201.4+23.7 nm

0.5%
(c) Volume fraction (%)

0.75% 1%

Fig. 9 (a) Diluted aggregate mean diameters and vol % versus original nanoparticle
volume fraction 60 min after sonication, (b) diluted aggregate mean diameters and vol %
versus original nanoparticle volume fraction 70 min after sonication, and (c) diluted
aggregate mean diameters and vol % versus original nanoparticle volume fraction 80

min after sonication
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Fig. 10 Pressure drop across the test section using pure DI
water (no nanoparticles) as the working fluid

Ref. [34]. Here, for comparison, we calculate h(x) from Nu(x) as
follows:

Nu(x)kn,o
=T (8)

Figure 11 shows the local h results of pure DI water, in both the
thermally developing region and the fully developed region, to-
gether with the theoretical solution from the model of Kays and
Crawford [34] within the laminar flow regime under constant heat
flux boundary condition. In the fully developed region, the calcu-
lated and measured h values both vary because of the temperature
dependence of kHZO- The lower the volume flow rate is, the higher

h(x)

4500 T T T T

Re = 30 Theory [34]

+ =——Re =150 Theory [34)

----- Re =270 Theory [34]
© Re =30 Experimental
X Re =150 Experimental
O Re =270 Experimental
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Fig. 11 Comparison between measured and calculated [34]
heat transfer coefficients for developing flow, for pure DI water
(no nanoparticles)
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the water temperature becomes under the same heat flux. Hence,
the higher the water temperature, the higher kHZO will be, which
results in higher h at the same Nu. The results show that the
measured pure water h values for the test section are consistent
with the predictions. Furthermore, the experimental data exhibit
good agreement with the trend of the classical thermal entry
length relation [34]

X
(—) =0.05-Re-Pr 9)
D; fully developed

5.3 Results for Aqueous 20-nm Al,O5 Nanofluids. The local
heat transfer coefficients in the thermal developing region are pre-
sented as a function of axial distance from the test tube entrance,
at three different volume flow rates, in Figs. 12(a)-12(c), respec-
tively. Most h results for the nanofluids are greater than that of
pure DI water, except for the nanofluid with a volume fraction of
0.5% at the entrance. In Fig. 12, several trends can be observed.
First of all, h decreases with increasing axial distance from the test
tube entrance. Second, the h results of the Al,O5-DI water nano-
fluid show that h increases with increasing flow rate and particle
volume fraction. Additionally, the enhancements in h near the en-
trance are greater than the enhancements in h further downstream.
Finally, the nanofluids exhibit a longer entrance region than pure
DI water.

Figure 13 presents h for nanofluids under different flow rates in
the fully developed region. In the fully developed region, the the-
oretical prediction [34] for pure DI water gives the theoretical h
values by using Eqg. (8) along with Nu(x)=4.364 for constant heat
flux at the tube surface. These calculated h values for pure DI
water show a gradually decreasing trend, which is due to the
temperature dependence of kHZO as mentioned before. The h re-
sults for the nanofluids did not show the same trend. Instead, h for
the nanofluids tends to increase with increasing volume flow rate
and particle volume fraction. However, at low volume flow rates,
the h results for the 0.5% and 0.75% nanofluids are nearly the
same. Moreover, the increases in h increased with increasing par-
ticle volume fraction.

The overall mechanisms by which the presence of nanoparticles
can enhance the static thermal conductivity, relative to its base
fluid, were studied by many research groups, but there remains
significant debate over both the mechanisms and the extent of
enhancement [12]. Furthermore, the exact mechanism that causes
the increment in h, i.e., the observed enhancement in convective
heat transfer of nanofluids over that of the base liquid, is still
unclear. One possibility could be that the observed increases in h
are due entirely to increases in the static thermal conductivity of
nanofluids k. Another possibility, suggested a number of years ago
by Ahuja [17,18] for micron-size particles, is that particle rotation
could also lead to convective heat transfer augmentation. Wen and
Ding [21] proposed that the enhancement might be due to particle
migration within the flow field, especially near the entrance where
a larger velocity gradient is expected. Particle size and shape are
also parameters, which might affect the heat transfer enhancement
because Yang et al. [24] observed only a very small enhancement
when using disklike particles.

The observed greater enhancement at the entrance region could
be due to how the thermal boundary layer develops for a nanofluid
compared with a pure fluid. From Refs. [32,34], h decreases with
increasing thermal boundary thickness and remains constant after
approaching the fully developed condition. h can be approximated
by h~kp¢/ 6, where ks is the nanofluid thermal conductivity and &
is the thermal boundary layer thickness. Therefore, either increas-
ing ks or reducing & can increase h. Viscosity measurements by
Prasher et al. [35] showed that the Prandtl number Pr for nano-
fluids increases with increasing volume fraction. Per the classic
entrance region length given in Eqg. (9), a greater Pr means a
longer entrance region, or thus a smaller § at a given location x
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Fig. 12 (a) Local heat transfer coefficients in the thermal developing region for different volume fractions at 1 ml/min
volume flow rate, (b) local heat transfer coefficients in the thermal developing region for different volume fractions at 5
ml/min volume flow rate, and (c) local heat transfer coefficients in the thermal developing region for different volume

fractions at 9 ml/min volume flow rate

compared with that of the pure liquid. This trend is borne out by
the 1 vol % Al,O5-DI water nanofluid curves in Fig. 12, which
appear to exhibit longer entrance regions than the other curves.
Hence, greater enhancement in h in the entrance region for nano-
fluids can be explained, at least in part, by classic Pr number
effects.

The mechanisms responsible for the observed enhancement in h
in the fully developed region are unclear. Buongiorno [36] pre-
sented a scaling analysis that suggests that any enhancement in
convective heat transfer caused by the presence of the nanopar-
ticles must be due only to changes in the effective thermophysical
properties (i.e., thermal conductivity and viscosity), and not to
nanoparticle dispersion. However, the analysis in Ref. [36] em-
phasizes the importance of the local nanoparticle distribution
within the fluid by including a “nanoparticle continuity” equation.
Mills and Snabre [37] studied the particle concentration distribu-
tion in the case of Poiseuille flow in a circular pipe. Their results
showed that suspensions exhibit a higher concentration core at the
center of the channel and the concentration distribution depends

Journal of Heat Transfer

on the suspension volume fraction. With a higher concentration
core, the nanofluid viscosity around the centerline of the circular
tube is greater than the viscosity away from the centerline, the
velocity profile is flattened around the centerline, but has a steeper
gradient near the wall. Therefore, h increases. Regarding the ther-
mal conductivity distribution along the radial direction, Sohn and
Chen [38] correlated the slurry thermal conductivity as a function
of shear rate, which is proportional to radial distance, and showed
significant enhancement in h even though they assumed a para-
bolic velocity profile in the first place. Finally, we estimated the
Nusselt number Nu for nanofluids in the fully developed region,
where we calculated the thermal conductivity of the nanofluids k¢
from Ref. [39].

Knf(,T) = kp(T)(1 + 4.5503¢)) (10)

The resulting fully developed Nu numbers displayed the same

trends as the results for h in Fig. 13, that is, Nu (or h) increases
with increasing flow rate and nanoparticle volume fraction, even
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Fig. 13 Heat transfer coefficient of water-based 20-nm Al,O4
nanofluids in the fully developed region

in the fully developed region. Our continuing work will probe and
hopefully clarify these mechanisms.

6 Conclusions

The convection heat transfer performance of 20-nm, y-Al,O4
water-based nanofluids in a single 1.02-mm inner diameter, con-
stant heat flux stainless steel tube, was experimentally investi-
gated for laminar flow, in both the developing and fully developed
regions. Overall, experimental results show that the heat transfer
coefficient h increases with volume flow rate and nanoparticle
volume fraction. The h enhancements also increased with increas-
ing volume flow rate and nanoparticle volume fraction. In the
developing region, the h enhancement decreased with increasing
axial distance from the test section entrance. These results also
showed that the higher the volume fraction, the longer is the ther-
mal entrance length.

The characterization of the measured nanofluids, including the
pH, electrical conductivity, size and shape, and zeta potential were
also documented. Further investigations, however, are needed to
establish the theoretical relationship between nanoparticle charac-
teristics and the enhancement in the heat transfer coefficient.
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Nomenclature

= area (m?)

= heat capacity per unit volume (J m™3 K1)
diameter (m)

heat transfer coefficient (W m=2 K1)

= current

= thermal conductivity (W m™1 K1)

= length (m)

Nu = Nusselt number

Peclect number

rxX—-—TITO0OOD>
Il
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Pr = Prandtl number
Q = heat rate (W)

q” = heat flux (W m=2)
r = radius (m)

Re = Reynolds number

T = temperature

V = voltage
V = volume flow rate (m3s71)
x = axial location

Greek Symbols
& = thermal boundary layer thickness (m)

o = electrical conductivity (uS cm™)
¢ = particle volume fraction
p = density (kg m™)
v = kinetic viscosity (m?s™1)
Subscripts
b = base fluid
i/0 = inner/outer
nf = nanofluid
p = particle
t = test tube
w = wall
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We perform a constructal design of particle volume fraction of four types of nanofluids
used for heat conduction in four systems: a circular disk, a sphere, a plane slab, and a
circular annulus. The constructal volume fraction is obtained to minimize system overall
temperature difference and overall thermal resistance. Also included are the features of
the constructal volume fraction and the corresponding constructal thermal resistance,

which is the minimal overall resistance to the heat flow. The constructal nanofluids that
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maximize the system performance are not necessarily the ones with uniformly dispersed
particles in base fluids. Nanofluids research and development should thus focus on not
only nanofluids but also systems that use them. The march toward micro- and nanoscales
must also be with the sobering reminder that useful devices are always macroscopic, and

that larger and larger numbers of small-scale components must be assembled and con-
nected by flows that keep them alive. [DOI: 10.1115/1.3155002]

Keywords: nanofluids, effective thermal conductivity, constructal theory, volume fraction
distribution, overall thermal resistance

1 Introduction

Nanofluids are fluid suspensions of nanometer-sized particles.
They find numerous applications in various fields due to their
unique thermal, electronic, magnetic, wetting, and optical proper-
ties that can be obtained via engineering particles’ structures and
properties [1-6]. Recent experiments on nanofluids have shown,
for example, up to twofold increases in thermal conductivity
[2,6-11], strong temperature dependence of thermal conductivity
[3,12], substantial increases in convective heat transfer coefficient
[13-16], and threefold increases in critical heat flux (CHF) in
boiling heat transfer [1-3,17-20]. State-of-the-art expositions of
major advances on the synthesis, characterization, and application
of nanofluids are available, for example, in Refs. [1-6].

The very essence of nanofluids research and development is to
enhance fluid macroscale properties through manipulating nano-
scale physics (structures, properties, and activities). Therefore, the
success of nanofluid technology depends very much on how well
we can address questions such as how to optimize nanoscale
structures and activities for optimal macroscale properties. In the
field of nanofluid heat conduction, efforts have been nearly exclu-
sively on correlating thermal conductivity of nanofluids with their
nanoscale physics in order to obtain optimal thermal conductivity
[1-6]. However, practical applications of nanofluids as the heat-
conduction fluids have often with a different ultimate aim such as
minimization of system highest temperature and minimization of
system overall thermal resistance. Therefore, interest should focus
not only on optimizing nanofluid thermal conductivity but also on
designing nanofluids for the best system performance.

The present work shows how to design particle volume fraction
of four kinds of nanofluids in order to obtain the best performance
for four heat-conduction systems. Such an analysis fits well into
the design with constructal theory [21-23] so that we term the
optimal particle volume fraction distribution as the constructal
particle volume fraction. First developed in the late 1990s, the
constructal theory holds that flow architecture arises from the
natural evolutionary tendency to generate greater flow access in
time and in flow configurations that are free to morph [21]. For
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our problem, the flow is the heat flow and the freedom lies on the
distribution of particle volume fraction in nanofluids. The con-
structal theory unites nature with engineering and helps us gener-
ate novel designs across the board [21]. It also complements the
march toward micro- and nanoscales with the sobering reminder
that useful devices must always be macroscopic, and that larger
and larger numbers of small-scale components must be assembled
and connected by flows that keep them alive.

2 Optimal Distribution of Particle VVolume Fraction

Consider nanofluid heat conduction in four systems: a circular
domain of radius R, (System 1, Fig. 1(a)), a sphere of radius R,
(System 2, Fig. 1(b)), a plane slab of thickness R,—R; (System 3,
Fig. 1(c)), and a circular annulus of inner radius R; and outer
radius R, (System 4, Fig. 1(d)). The temperature at r=R, is main-
tained at a fixed value T, for all four systems. The volumetric heat
generation rate g is constant in Systems 1 and 2, where the disk
thickness in System 1 is unit. In Systems 3 and 4, a constant heat
flux input g; occurs at r=R;. For the coordinates shown in Fig. 1,
the one-dimensional (along r-direction) steady heat-conduction
equation is

1d dT
——|k S =—tq"” 1
rsdr[ f dr] a @

where s and t values are listed in Table 1 for each of the four
systems. k. is the effective thermal conductivity of nanofluids.
Here we consider four types of nanofluids whose effective thermal
conductivity satisfies Birchak, Landau and Lifshitz, Lichtenecker,
and Maxwell formulas, respectively [3]. The first three can be

written as
k 1/n n
ke=ke) 1+v (;E) -1 )
f

where n values are listed in Table 2 for each of the three types of
nanofluids. k, and k; are the thermal conductivities of particles
and base fluids, respectively, and are assumed to be material con-
stants. v is the particle volume fraction. For the Maxwell nano-
fluids,
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Fig. 1 Heat conduction in four systems of nanofluids: (a) a
circular disk of radius R, and unit thickness (System 1), (b) a
sphere of radius R, (System 2), (c) a plane slab of thickness
R,—R; (System 3), and (d) a circular annulus of inner radius R;
and outer radius R, (System 4)

k, -k
ke = K¢ + Bko———2—1—— 3)

2k + ko= (ko = ko
The composition of the nanoparticles and the base fluid is fixed,
and is accounted for by the particle volume fraction

_ volume of k, material
total volume

(4)

Our goal is to search for the constructal v(r) to minimize the
system highest temperature T, that appears at r=0 for Systems 1
and 2 and at r=R; for Systems 3 and 4. We detail the process of
finding the constructal v(r) by using Eq. (2) for the effective ther-
mal conductivity. The results for the Maxwell nanofluids can be
readily obtained by using a similar approach and are listed directly
in the tables.

Table 1 s and t values for four systems

System 1 System 2 System 3 System 4
Systems (Fig. 1(a)) (Fig. 1(b)) (Fig. 1(c)) (Fig. 1(d))
sand t s=1,t=1 s=2, t=1 $=0, t=0 s=1,t=0
values ' ' ' '

Table 2 n values for the three types of nanofluids

Nanofluids Value of n
Birchak n=2
Landau and Lifshitz n=3
Lichtenecker n—oo
RO
f [v(r) = @lridr=0 (7)
0

Minimizing (T,,—To) under constraint (7) is the same as minimiz-
ing [24]

RU
J:f F(r)dr (8)

0

where

qmr

1/n n
(s+1)kf{1+v(r)[<E‘3) / —1“
f

and A is the Lagrangian multiplier.
Minimizing J by applying Euler—Lagrange equation [24]

|: EE 1/n :|
" -1
; iy

F(r) = +\ro(r) - ¢] (9)

2.1 Case of t=1. By integrating Eq. (1) with respect to r from Foy= —Forn="- +Ar$=0
0 to r, we obtain dr K\ n+l
d_T_ _qmr (5) (S+1)kf 1+U(r) (kf) -1
dr  (s+1k, (10)
Substitqting Eq. (2) and integrating again with respect to r from 0 yields
to R, yield
Ro " nqm 1/(n+1) 1
q"r v(r)= T —
Tm - TO = J Y dr Kk 1/n n k 1/n
0 K.\ n n Tp) o s-1 S}
<s+1>kf{1+u<r>[(f) —1” (S”)M‘f[(kf) 3 [(h) ]
f
The fixed composition constraint for the case t=1 can be written (D
as Substituting Eq. (11) into Eq. (7) leads to
n "
A= a (12)
1-3 n+1 <k )1/n :|n 1 n+1
s+ 1+ ———— | k[-2] -1 + Rs1
( )[ (S+1)(n+1)] ’[ ke ¢ °
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Table 3 Constructal volume fraction distributions

Systems
System 1 System 2 System 3 System 4
Nanofluids (Fig. 1(a)) (Fig. 1(b)) (Fig. 1(c)) (Fig. 1(d))
8 1 13 Ri\?
Ucon(r):§ ¢+ (RL> 2|:1_<R_0> :| 1 r -2/3
EE 12 ° vcon(r) - ¢+ R_
K -1 R \43 12 0
. f ot ]
Birchak Veon(N = 1 Veon(N) = ¢ Ro Kr
Kk 1/2 _;
B o
f ")
ks
ol
-1/4 3|1~ <_I> :| -172
Veon(r) ¢+ ]1./3 (L) Ueon(r) = Ry ¢+ ! (L>
2 (EE) -1 Ro [ (R»>3/2] [(Ee)l/s } Ro
k 41— = -1
t?fgﬂ?ti and vcon(r)=¢ 1 ' vcon(r)=¢ R, f
- 1
(EE)US -1 - 13
‘ [
ks
R. 2
| AR .
Ueon(r) = In(kp/kf) -2 InR_o - . ( R, )zlnR—O
. _ In(r/R,) 1 _ “\R.
hteneck = - - - .
Lichtenecker  veon(N=¢  ven(r) in(kyk) 3k Veon(r) = ¢
k
fp_
+¢In K 1
5 Kk 1( 5)[ z_k&]( )
Veon(F) = g[zﬁ z(k—tk%l)}( ) Ve =\ R ) 20k - 1)
Maxwell Ueon(N)=¢p Ueon(N)=¢p 2+ k/k
2+ kyk _ e
2(k ki~ 1) 2ky/ki = 1)

Therefore, we obtain the constructal v(r) as follows:

[ 1-5s ] 1 (Ro (s-1)/(n+1)
Veon(N) = | 1+ 7DD b+ " T)
"]
ks
1 13)
k 1/n
S
[(kf> 1]
Since
2
n(n+l)q”’r[( ) —1]
_ k¢
Fv(r)v(r) - E(Fv(r)u’(r)) = >0
<s+1>kf{1+v<r>[<59) - H
K
(14)
and
Fv’(r):0 (15)

the veon(r) in Eqg. (13) is indeed the constructal distribution of
particle volume fraction that minimizes the system highest tem-
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perature T,, (Table 3).

Substituting Eq. (13) into Eq. (6) yields the constructal overall
temperature difference (T,,—Tg)eon, Which is the minimal (T,
=To),

mp2
q"R
(Tm - TO)con = e
(ns+n+2)"t

Kk 1 n
R A— p 2} —
(S+1)n—1(n+l)n+1kf{1+¢|:<kf) 1:|}

(16)

which is listed in Table 4 for different combinations of s and n.
Table 5 lists the corresponding constructal overall thermal resis-
tance Ry con, Which is the minimal overall thermal resistance.

2.2 Case of t=0 . By integrating Eq. (1) with respect to r
from R; to r, we obtain

dT dT
S— - —_— =
(ker dr)r:r <kr dr) 0 17)

Since
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Table 4 Constructal overall temperature difference

Systems
System 1 System 2 System 3 System 4
Nanofluids (Fig. 1(a)) (Fig. 1(b)) (Fig. 1(c)) (Fig. 1(d))
quz 1 81q”’R2 1 1 27(RA/3_R_A/3)3q_R_ 1
(T = Todoon = =2 (T = Todoon = 2> (T = Todeon =0i(Ro =R (o= Todeon =2 =
. 4 Kk, 512k, k 16(R2-R?)? K,
Birchak K. \v2 2 K \12 2 K \12 2 K \12 2
kg =k¢ 1+¢[(i> —1] kg =kt 1+¢[(l> —1] ky=K) 1+ o) (l) -1 kg =k 1+¢[(£) —1}
K K ki kg
q"R2 1 23049"R? 1 1 128(R3? - R¥2)'qiR; 1
T =Todeon=——"— (T = Todeon = - (T = To)eon = Ai(Ro = Ri)—; (T = Todeon = U
i Lo L) o, s K0 EERS ks
kg =k¢ 1+¢[(ki> —1] kg =ky 1+¢{(ki> -1 ky=ke) 1+ ) (f) -1 kg = ki 1+¢[<f) -1}
f f f f
2 2:
q"R% 1 e%q"R% 1 1 _ e(R5—R)AiR; 1.
(T =Todeon =31 (Tn=Toeon= g1 (T~ Toleon = Gi(Ro = Ri) = (Tn=To)oon = 2szﬁmg«?)lemgmswmg«sk ;
Lichtenecker ¢ 4 o i ¢
k,\¢ k,\? ky | ¢
) ) o) o)
K k¢ K k¢
(T = Tocon

(T = To)eon
3q"R%(2k; + ky)
2ks+k
(Tp=Tohn= R L i)
4 k, P
3(k, -k,
ks =Ky 1+—P—( il ]
2k; +ky — (ky— k)b

Maxwell qug B 47qug 1

T 12k 300 K,

(approximation for the case of ¢<1;)

3(k, — ki
k] 1+ —2o=k0e ]
2k; +kp = (k, — k)@

25k(ky —kp)| ¢+ ——E

60iRi(Ro — Ri) (2K¢ + k)
T2(Ry + Rk 2(ky — k)b + 2K + K, ]

R
aiRi InE"(RD +Ri)[2K¢ + Ky + 2(ky — ko) ]
I

2(R, + Riki[2(ky — ko) + 2k + kp]

1
(Tin = Toeon = Gi(Ro = Ri)k—;

R, 1
= giRiIn—"~
Riky

®
3(k, -k
k¢:kf[1+—i’—( 09 ]
(approximation for the case of

2k;+ ko~ (ko —kp) b
Ri
R_ from 0.5 to 1);

0
SIS,
T 2k =~k

dT
<_ eE) =q; (18)
r=R;
Eq. (17) becomes
dT _ - quIS
dr ke (9

Substituting Eq. (2) and integrating again with respect to r from R;
to R, yield
QR

RO
Ri Kk 1/n n
rskf{l + v(r)[(—E> - 1”
K

The fixed composition constraint for the case t=0 can be written
as

dr (20)

RD
f [v(r) = @lrdr=0 (21)
Ri

Minimizing (T,,—T,) under constraint (21) is the same as mini-

mizing [24]
RO
J=f F(r)dr
0

112402-4 / Vol. 131, NOVEMBER 2009

(22)

where

qR?

rskf{l + v(r)[(ﬁg)l/rl - 1] }n
ks

and A is the Lagrangian multiplier.
Minimizing J by applying Euler—Lagrange equation [24]

e

F(r) =

+Aro(r) - ¢] (23)

|_c7\_

k S
Fv(r)__Fv’(r) +Ar°’=0
dr k. \1n n+1
ker® 1+v(r)[(—9) —1}
K
(24)
yields

n _R_s 1/(n+1) 1

v(r) = iR - (25)

Wl (5[]

Substituting Eqg. (25) into Eq. (21) leads to
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Table 5 Constructal overall thermal resistance

Systems Constructal overall thermal resistance
System 1 R - (T = To)eon - ii
(Fig. 1(a)) NN g aR2 X 1 4k,
R _ (Ta—Tooon 1728 1
System 2 NN g X 4mRY3 146417R, ks
(Fig. 1(b)) (exact for Landau and Lifshitz nanofluids, with over 98% accuracy
for the other three types of nanofluids)
System 3 _(Mn=Toeon _ oL
(Fig. 1(c)) Rinoon = giX1x1 =R Ri)kqb
Birchak:
R - (T = To)eon - 27(Rg/3 - R?B)S 1
NN g x 27R X 1 32m(RE-RA)? k'
Landau and Lifshitz:
R = (Tn=Toeon _128(R;" R 1
th,con — - 2 2\3 ’
gi X 2mR; X 1 162m(R; - R{)® Ky
Lichtenecker:
System 4 R _ (Tm - TO)con _ E(Rg - RIZ) 1
(Fig. 1(d)) NN g X 2R X 1 g 2R RE-RORI-RERDIRERD K,
0 1
Maxwell:
R
6(R,~R) = (Ry +Rp)In=° 1 R
L2k +kg) = =In=2(k, — k
R _ (To=Toeon _ 27(Ry*+R) @ 7 m Ri( pm k)9 _ i ﬂ&i
theon ™ g x 2aRy X 1 2k[2(k, — ki) b+ 2k; + k] 27 Riky
R:
(approximation for the case of R—' from 0.5 to 1)
0
- ngiR; (26)
ns—s+n+1 n+1 KE 1/n n 1 n+1 Rgﬂ _ Ris+1 n+1
(S + 1)(n + 1) kf kf -1 ¢+ Rgns—s+n+1)/(n+1) _ Ri(ns—s+n+1)/(n+1)

I

Therefore, we obtain the constructal v(r) as follows:

( ) _ . 1 Rg+1 _ Ris+1
Veon(F) =) ¢ { K \Un R(ns=s+n+1)/(n+1) _ R(ns-s+n+1)/(n+1)
B A
ks
[ ns-s+n+1 ] F2s/(n+1) _ 1 27)
(s+1(n+1)

Since

n(n+1)qiR?[(59)lm—1]2

d k¢
Fotwm = a(Fv(r)v’(r)) = >0
k 1/n n+2
ool
K
(28)
and
er(r) =0 (29)

the veon(r) in Eq. (27) is indeed the constructal distribution of
particle volume fraction that minimizes the system highest tem-
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B

perature T,, (Table 3).
Substituting Eq. (27) into Eq. (20) yields the constructal overall
temperature difference (T;,—Tg)con as follows:

(Tm - TO)con
qiRiS(Rgns—s+n+l)/(n+1) _ Ri(ns—s+n+1)/(n+l))n+1

_(ns—s+n+l)n+1 e st [(Ee)l/n_ ] n
(s+1)”(n+1)"+1(R° ROk 1@ ks !

(30)

which is listed in Table 4 for different combinations of s and n.
The corresponding constructal overall thermal resistance Ry, con IS
listed in Table 5.

3 Discussion

Both constructal overall temperature difference (T, —Tg)con and
thermal resistance Ry, o are proportional to k;} for all four sys-
tems, where k, is the effective thermal conductivity evaluated at
the overall (average) particle volume fraction ¢ (Tables 4 and 5).
The proportional coefficients for Ry, con are either invariant for
Systems 1-3 or nearly invariant for System 4 with respect to types
of nanofluids (Table 5). Therefore, the constructal thermal resis-
tance Ry, con is indeed an overall property fixed only by the system
global geometry and the average thermal conductivity of nano-
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Fig. 2 Distribution of constructal particle volume fraction for System 2 at
¢$=0.05 and k,/k{=385/0.6 (thermal conductivity ratio of copper and water)

fluids used in the system. Efforts in upgrading thermal conductiv-
ity of nanofluids also do lead to reduction in constructal overall
thermal resistance.

However, the constructal particle volume fraction v, (the way

by which to realize the constructal thermal resistance) is either a

global property invariant with the types and the details of nano-
fluids for Systems 1 and 3, or a property depending on the types
and the details of nanofluids for Systems 2 and 4 (Table 3, Figs. 2
and 3). The march toward synthesizing uniformly dispersed nano-
fluids [1-6] not necessarily leads to the constructal nanofluids that
maximize system overall performance. For example, the construc-
tal nanofluids used in Systems 2 and 4 are with a decreasing
particle volume fraction from r=0 or r=R; where the heat flux is
high to r=R, where the heat flux is lower (Figs. 2 and 3); they
depend not only on system global geometry (R;/R,) and nanofluid
global property (¢) but also on the types and the details (k;/k) of

0.10

nanofluids. Therefore, nanofluids research and development
should focus on not only nanofluids but also systems that use
them.

A uniform distribution of particle volume fraction distribution
as the constructal volume fraction is expected for System 3 be-
cause the heat flux is uniform everywhere in the system. It comes
as a surprise, however, for System 1 in which the heat flux de-
creases from the center to the periphery. This could represent

some kind of new phenomena that demand further study in the
future.

4 Concluding Remarks

The constructal overall thermal resistance Ry, con IS inversely
proportional to the effective thermal conductivity evaluated at the
global (average) particle volume fraction ¢ for all four systems.

0.08 -~

0.06

Veon(r)

0.04

Birchak

Landau & Lifshitz

Lichtenecker

I Maxwell

0.02

o0 +—FF—F—— T 77— T

090 091 092 093 094 095 09 097 098 099 1.00
1/Ro

Fig. 3 Distribution of constructal particle volume fraction for System 4 at
Ri/R,=0.9, ¢=0.05, and k,/k;=385/0.6 (thermal conductivity ratio of copper

and water)
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The proportional coefficients are invariant or nearly invariant with
respect to types of nanofluids. The constructal particle volume
fraction of nanofluids to materialize this Ry, con is @ uniform dis-
tribution for Systems 1 and 3 (circular disk and plane slab), and a
nonuniform distribution with a higher particle volume fraction in
the higher heat-flux region for Systems 2 and 4 (sphere and cir-
cular annulus).

Therefore, the constructal overall thermal resistance can be re-
duced through enhancing the thermal conductivity of nanofluids.
The constructal nanofluids that maximize the system performance
are not necessarily the ones with uniformly dispersed particles in
base fluids. Our focus of nanofluids research and development
should thus be not only on nanofluids themselves but also on their
systems and ultimate goals. The march toward micro- and nanos-
cales must also be with the sobering reminder that useful devices
are always macroscopic, and that larger and larger numbers of
small-scale components must be assembled and connected by
flows that keep them alive.

Acknowledgment

The financial support from the Research Grants Council of
Hong Kong (Grant No. GRF717508) to L.W. is gratefully ac-
knowledged

Nomenclature

F = integrand
functional
thermal conductivity (W/m K)
nanofluid type index
heat-source-term index
heat flux (W/m?)
volumetric heat generation rate (W/m?)
= the coordinate (m)
= radius (m)
= thermal resistance (K/W)
heat-conduction system index
= temperature (K)
= particle volume fraction

J
k
n
t
q

q!l

S dwns U=
Il

N = Lagrangian constant
¢ = average particle volume fraction

Subscripts

= lower temperature
= effective

= base fluid

= inner

maximal

= outer

= particle

T O3 - O
|
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con = constructal
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Flow Within a Channel With a
Permeable Base

We examine the heat transfer in a Newtonian fluid confined within a channel with a lower

permeable wall. The upper wall of the channel is impermeable and driven by an accel-
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erating surface velocity. Through a similarity solution, the Navier—Stokes equations are
reduced to a fourth-order differential equation; the analytical solutions of which deter-
mined for small Reynolds numbers show dependence of the temperature and heat transfer
profiles on the slip parameter based on the properties of the porous channel base. For
larger Reynolds numbers, numerical solutions for three main groups of solutions show
that the Reynolds number strongly influences the heat transfer profile. However, the slip
conditions associated with the porous base of the channel can be used to alter these heat
transfer profiles for large Reynolds numbers. The presence of a porous base in a channel

can thus serve as an effective means of reducing or enhancing heat transfer performance
in model systems. [DOI: 10.1115/1.3154626]

1 Introduction

Flow within a channel with porous walls has been investigated
for many years since many natural and industrial processes form
the basis of this problem. With applications that range from
ground water flow [1], natural transpiration, and the respiratory
system to binary gas diffusion, filtration and surface sublimation
[2], nuclear waste disposal [3], and oil recovery, many variations
in the problem developed. One interesting property of the flow of
a fluid within an infinite channel is that it yields an exact solution
to the Navier—Stokes equation.

Many authors have examined heat transfer and fluid flow within
channels, which may or may not be permeable. Berman [4] was
probably the first to study the laminar flow in a channel with a
porous wall. He investigated the dependence of key velocity and
pressure components in position coordinates, the dimensions of
the channel, and the properties of the fluid. Beavers and Joseph
[5] later designed experiments, which focused on the boundary
condition at the fluid-porous interface. These studies marked the
emergence of the famous Beavers—Joseph boundary condition,
which states that the velocity gradient at the fluid side is propor-
tional to the slip velocity at the interface [5].

Verma and Bansal [6] later investigated flow and heat transfer
profiles in two main geometries. They examined the heat transfer
of fluid squeezed between two parallel plates; the lower plate set
stationary while the upper plate moves with a constant velocity U.
There is a uniform suction at the stationary plate, and both plates
are maintained at the same temperature. They also examined lami-
nar flow through a porous pipe of uniform cross section with the
pipe walls maintained at constant temperatures. Other researches
followed, and an insightful overview by Kuznetsov [7] gives a
time-line study of significant contributions to the study of forced
convection in a porous media, part of which is occupied by a clear
fluid and part by a fluid saturated porous media.

Brady and Acrivos [8] determined the exact solution to the
Navier—Stokes equation for the flow inside an infinitely long 2D
channel and an axisymmetric tube where the surface velocity of
the channel or tube grows linearly with the streamwise coordinate.
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Using the prescribed form of the flow field, the equations of mo-
tion were reduced to an ordinary differential equation for a simi-
larity function. The principal characteristic of the solution is that
the presence of reverse flow where the streamwise velocity
changes sign in the transverse direction. Some other exact solu-
tions containing regions of reverse flow are the outflow in a di-
verging channel and the flow between infinite rotating disks. Al-
though Brady and Acrivos [8] discussed that the study was
applicable in cases involving porous media, they neglected to
elaborate further, probably because their study was predominantly
motivated by the flow inside a long slender drop placed in an
extensional field, rather than the flow in porous media.

The problem described by Brady and Acrivos [8] is quite useful
since flow and heat transfer in a stretching surface have many
significant industrial and engineering applications, for instance,
cases where heat treated material is manufactured in an extrusion
process [9]. Crane [10] was perhaps the first to examine the semi-
infinite flow driven by a stretching surface. His work described
the process of polymer extrusion from a narrow slit. Wang [11,12]
followed up on this work, focusing on the partial velocity slip that
occurs on a stretching boundary in the case of particulate fluids
such as foams and emulsions.

A heat transfer boundary condition at the fluid-porous interface
to account for nonequilibrium between the fluid and solid phases
initially suggested by Ochoa-Tapia and Whitakers [13] was exten-
sively used in early work by Kuznetsov [14,15]. Kuznetsov was
later concerned with the steady flow in a composite channel bound
by two infinite plates. The lower part of the channel is filled with
clear fluid while the upper part of the channel comprises a fully
saturated porous medium with uniform permeability. While the
upper plate and the porous medium remain fixed, the lower plate
moves with a constant velocity. The authors used the Brinkman—
Forchheimer extended Darcy equation to investigate the flow in
the channel and found that for small Darcy number, there is al-
most no fluid flow in the porous region and the heat transfer is by
thermal conductivity only. Also, a decrease in Darcy number leads
to a decrease in permeability and to an increased velocity [16].
Extension of the work by Kuznetsov suggested that the majority
of practical applications of porous media involved a small Darcy
number, implying a small thickness of the momentum boundary
layer, much smaller, in fact, than the thickness of the boundary
layer itself [7]. He described the four geometrical configurations
of parallel plate channels partly filled with porous media. One of
the configurations is similar to the one studied in this paper, where
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a lower permeable wall is overlaid by a clear fluid. However,
unlike the problem in this paper, the top plate was stationary.
Kuznetsov subjected the plates in various configurations and heat
fluxes and determined the analytical solutions for the different
configurations.

The study was further developed by Xiong and Kuznetsov [17]
to include application of uniform heat fluxes to both plates. In a
similar manner, they set up a system of four equations, two mo-
mentum equations and two energy equations, for the two sections
of porous medium and clear fluid. For the boundary conditions,
they made use of the dimensionless adjustable coefficient sug-
gested by Ochoa-Tapia and Whitakers [13] describing the jump in
the clear fluid at the interface of the porous medium and the clear
fluid. Nield and Kuznetsov [18] studied an external convection
problem by means of a composite system, which attached a rela-
tively thin porous substrate to the surface of a flat plate in an
attempt to build on Vafai and Kim’s [19] work. They used the
Beavers—Joseph boundary condition, which is used later in this
present paper, and found that like Xiong and Kuznetsov [17], the
main effects of the porous medium were to introduce slip at the
boundary and also to change the value of the thermal conductivity
in the domain occupied by the porous medium. The study of
forced convection over a wedge with a thin layer of porous ma-
terial was also explored later on by Kuznetsov and Nield [20],
where the wedge angle can be changed. Here, a wedge angle
corresponding to zero implies a plane surface and so some of the
results obtained can be validated using the previous studies. In all
of the above studies, a common thread that existed was the de-
pendence of the heat transfer profile on the Prandtl number and
later on in this paper, the relationship is further investigated.

Zhao and Song [3] studied forced convection in a saturated
porous medium subject to heating, provided there is a permeable
wall placed perpendicular to the flow direction. Analytical solu-
tions show that the heat transfer rate from the permeable wall to
the fluid is described by the equality of the Nusselt and Peclet
numbers. This is in contrast to the case of boundary layer flow
over a flat plate in a porous medium where the Nusselt number is
instead equal to the square root of the Peclet number. The results
were supported by experimental results using a porous structure
consisting of glass beads heated by a finned surface. Zhao and
Song [3] suggested that the linear relationship between the Nus-
selt and Peclet number implies that heat is transferred when the
fluid flow is opposite to the direction of the heat flow. They com-
pared their result to those described by Nield and Bejan [21], who
showed that in the case of boundary layer flow over a flat plate
embedded in a porous medium, where the plate is heated by a
constant flux, the relationship of Nu=1.329Pe? arises.

Zhao and Song [3] described the system they studied as a pos-
sible heat exchanger, which may be applied in such technologies
as the cooling units of electronic devices, high powered lasers,
and X-ray medical devices. The larger surface areas available in
porous bodies allow for enhanced heat transfer due to extended
surfaces and also the mixing of fluids can be facilitated due to the
presence of the porous particles [3]. In later work, motivated by
the direct feed methanol fuel cell, a gas-liquid two phase flow in a
channel with a fitted permeable sidewall was studied. Liquid was
fed into the channel from its entrance and a gas was injected
uniformly into the test channel along the sidewall [22].

Zhou and Majdalani [23,24] also determined theoretical solu-
tions for large and moderate injection and suction in a porous
channel with expanding or contracting walls. Using similarity
transformations, they arrived at symmetric solutions for the flow
profiles using linearly varying axial velocity and a uniform wall
expansion ratio. These authors found that the velocity profiles
were sinusoidal for injection and linear for suction when there is
constant wall expansion. Wall contraction tended to increase the
Reynolds number and the asymptotic solutions deteriorated when
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the expansion and contraction values were of the same order as
the Reynolds number. A more gradual flow tended to exist when
the channel had expanding walls.

This current problem was initially conceived through theoreti-
cal considerations of liquid geothermal systems. A geothermal
system can be thought of as an area above normal temperature
where heat flow involving circulation of hot fluids occurs through
natural convection [1]. These systems have been and still continue
to be a popular source of alternative energy. Authors like Afzal-
imehr and Anctil [25] conducted experiments on nonuniform
open-channel shear accelerated flow in gravel bed channels,
which are naturally permeable surfaces. They determined the ex-
istence of a boundary layer when a favorable pressure gradient
existed. They neglected to study the heat transfer aspects; how-
ever, we realize that conductive and convective heat flow studies
are also critical since these mechanisms are the major contributors
of most of the heat discharge in geothermal areas. In many volca-
nic islands in the West Indies such as Nevis and St. Lucia, there
are numerous untapped sources of geothermal energy. Those
sources, which are constantly being investigated for commercial
viability, need to be optimally used. Through the use of a math-
ematical model involving channel geometry, the processes in-
volved in the system subject to initial and boundary conditions
can be described and solved by means of differential equations.
We assume that the geothermal sites can be modeled as having an
upper wall velocity due to ground deformation by the underlying
active volcano and we assume that water moves up over a hori-
zontal fault plane. Mathematical modeling affords a cheap eco-
nomic alternative to high cost drilling procedures [1]. The solution
will aid in the description of the basic phenomenon associated
with geothermal sources. There are two main applications: first to
investigate geothermal systems, which have not been disturbed by
man to evaluate the system before exploitation, and second, to aid
in the assessment of available renewable energy and the possible
rates of extractions once the systems have been disturbed. The
model can be validated through the measurements of cation con-
centrations in hot spring water, which can provide estimates of
temperatures at various depths. The surface acceleration can be
determined by geodetic measurements using global positioning
system (GPS) measurements.

2 Formulation of the Problem

We examine the flow of a Newtonian fluid of density p and
viscosity w within a 2D infinite channel. The upper wall of the
channel is impermeable and driven by a surface velocity Ex pro-
portional to the streamwise coordinate. The lower wall comprises
a naturally porous surface of permeability K. A naturally porous
surface suggests an irregular arrangement of voids and/or particles
within the surface (see Fig. 1).

Each channel wall is maintained at distinct isothermal tempera-
tures Tg and T, the former being the temperature at y=0 and the
latter at y=a, the width of the channel. In the geometry, no sym-
metry exists within the channel along its width because of the
existence of the porous base layer.

impermeable wall
T,

2a —
y [7777777777777777777777777747777777777777777777777777) permeable wall
Ty

x

Fig. 1 Channel with a fixed lower porous wall with an upper
wall driven by a surface velocity
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In the case of an extensional field, for either stretching or com-
pressing flow, the state of stress of the fluid can be fully described
by the diagonal tensor T=ae;e, +ae,e,—2aese3. Here the set B
=ej,€,,e3 is the basis of three-dimensional space and each vector
of this space can be written as a linear combination of e;, e,, and
es. In this problem, the extensional field in 2D is given in terms of
u=Ex, where u is the velocity in the x-direction.

The flow is considered antisymmetric about the origin x=0 so
we need to seek a solution only in the semi-infinite domain for the
solution x=0. The effect of permeability appears through the slip
boundary condltlons at y=0. Using the slip parameter o, we write
au/oy= (ru/\K K #0. We also define the parameter A=ca/ VK.

We use a similarity parameter f like that of Brady and Acrivos
[8] to determine an analytical solution. First, nondimensionalize
the variables y*=y/a, x*=x/a, u*=u/Ea, and v*=v/Ea.

Also let u=xf’(y) and v=-f(y). This satisfies the mass conti-
nuity equation in two dimensions

Jdu  Jdv
—_— 4 — =
X ay
For the steady state case du/dt=0 and dv/dt=0, which allows
us to write the Navier—Stokes equations as

U au ap azu Ea
plU—+v—|=-—+u|l =+ (1)

ax o ady ax ax? ay

dv av ap (&zv 192v>

—tp— == —+ul —S+— 2
p(u X vay) ay Mo gy @

Upon substitution of the transformed variables and the velocity,
we arrive at an equation, which incorporates the shear Reynolds
number Re=pEa?/ u, and a reduced equation (3) with dependence
on the pressure and Re is

ap

- x =Re((f")% - ff") (3)
Further examination of Eq. (2) shows that
p

EZa’ff' - pEf" = — 4

pE%a 7 Py (4)

which means that since the left hand side is a function of y only,
then #2p/ay 9x=0.

We apply this result to Eq. (1) and determine that the equation
is satisfied for dp/dx=B, where B is a constant of integration. This
was first identified by Berman [4]. Later in the work done by
Brady and Acrivos [8], they determined that the pressure equation,
which can be used to satisfy the problem, can be written as p
:po(y)+§ﬁx2, where B is a constant and a slip grouping param-
eter, and pg is a function of y only. We make use of this slip
grouping parameter B in our solution below. Later, Ferro and
Gnavi [26] defined their pressure term in two dimensions to be
p(x,y)=(y)+(Ax?/2), where their main momentum equation is
defined in terms of the channel width only through the transversal
Reynolds number.

Barrat and Bocquet [27] determined that for Poiseuille flow, the
existence of slip increases the flow rate by a factor of 1+(86/h),
where h is the pore diameter and § is the slip length. When ex-
trapolated toward the wall, the parallel velocity component then
matches the velocity at the wall at some distance equivalent to the
slip length.

Consider now the steady state energy equation, which in rect-
angular 2D coordinates is written as

( aT aT) (&ZT aZT)
pclu—+v— — (5)
ax - ay Xt ay?

Here we have assumed negligible viscous dissipation and so omit-
ted the viscous terms of the energy equation. « as used above is
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the thermal conductivity and c is the heat capacity. Now we use
T*=(T-To)/(T1—To)=xg(y)=a’x*g(y*) and making the relevant
substitutions and rearrangements to the energy equation we arrive
at

gH
Re Pr

where Pr=cu/ x defines the Prandtl number.

We have assumed that the lower wall has a small permeability
so flow within the porous region can be ignored up to the first
order in permeabilities thus the effect of permeability enters only
through the slip boundary conditions:

(1) aty*=y/a=0, &u/&y:ou/\e“i, v=0,and T=T,
(2) aty*=y/a=1, u=Ex, v=0, and T=T,

f'g-fg'= (6)

From these relations, the following boundary conditions
emerge: f'(1)=Ea, f(1)=0, g(1)=1/(a®™), on y*=1. Here ax* is
not zero.

3 Analysis and Modeling

We seek to obtain a perturbation solution for small parameter
values: f=fy+Re f;+0O(Re)? and g=go+Re g;+O(Re)?.

Here, we model our solution after the studies of Hamza and
Bhatt [28-31] up to the first order in Reynolds number. The fol-
lowing conditions must be satisfied: ff'=p, f;' = (fy)?+fof5 =0,
ds=0, and Pr(f{go—fogg) =07

Upon solving, the following solutions arise:

i A 1
fo= 2 wyite 2 +ver 1)

2 2.2
f1:—< B y7+,8)\01C2y6+C2C1)\2 5+ﬁ)\y4
2520 180 30 8

2.2
C5C
+%y3+csy2+c4y>
_y
gO_azx*
By y( B\ ))
—_— _CC)\ - = c+.C
9= (60 1272 pr\ T g0 12 12
where
B
Clea_E
=t
27 140
el (28
37840 T1e2\1+x\ 15 8 3) 36
C__ﬁ_z_ﬁ A SRS S S
47780 T 180N+ 11 30(1+ 2D T B (1 + 02t

Lot
6(1+\)?

4 Numerical Solution

The numerical solution proceeds via a simple stretching trans-
formation in accordance with Ref. [8], where Eq. (3) is converted
into an initial value problem. Let f=Re”"* (), where {=Re”y.
Evaluating the first three derivatives of the function f, substituting
into Eq. (3), and simplifying yield
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Fig. 2 Plot of ¢ versus ¢(&) and ¢'(&)

"B = ()¢ ¢ (7
where 8*=g/Re**"1. Our new boundary conditions are
#(0)=0, ¢R")=0, ¢ (R")=EaR"™, ¢"(0)=\R7¢'(0)

We now have an initial problem with ¢ to be solved with 8* as a
parameter. We set ¢'(0)=0 as one possibility for fluid velocity
along the centerline. Naturally, two other possibilities exist,
¢'(0)=1 and ¢'(0)=-1, as noted by Brady and Acrivos [8],
which flow in opposing directions. We can vary g* over all pos-
sible values and in the first instance we choose a value corre-
sponding to —2. We proceed to integrate Eq. (7) as an initial value
problem until a zero of ¢ is encountered at some value of . This
value, say, {,, together with the corresponding value of the first
derivative of ¢’ evaluated at ; are used to determine Re and the
value of y. A sample solution is shown in Fig. 2 for a Reynolds
number of 40.

We can now evaluate the longitudinal velocity profiles of flow
within the channel. These solutions are similar in form to those
presented by Brady and Acrivos [8] and the solutions to various
Reynolds number designated by these authors as the Group 1
series are presented in Fig. 3. In Brady and Acrivos’ solutions,
there is evolution from R=0 creeping flow profile into a flow
having a familiar boundary layer structure. There exists an invis-

cid core of strength O(Re‘(%)) along with a thin boundary layer of

Re=40; Pr=20; 1/ax=0.3;1=0.5

0.8 1

0.41 1

0 0.05 0.1 0.15 0.2

a(y)

Fig. 4 The temperature profile for Re=40

O(Re‘(%)) next to the moving surface. The variation in the longi-
tudinal velocity profiles about the f’=0 point is notably different
because of the present permeable base layer.

We now proceed to find the numerical solution for the tempera-
ture profile and heat transfer profile within the channel. Since we
have already evaluated f, we now have a two point boundary
value problem to be solved in an effort to determine the g and g’
functions within the channel, which represent the temperature and
heat transfer profiles, respectively. Using a collocation method,
the coupled equations were next expressed as a system of first
order differential equations and a residual function, which returns
zero at the boundary values, was also defined along with initial
guesses. These guesses can be chosen based on the analytical
solutions previously derived.

The temperature and heat transfer profiles for a Reynolds num-
ber of 40 are shown in Figs. 4 and 5. g(y) is representative of the
temperature profile while g’(y) is representative of the heat trans-
fer parameter, the Nusselt number. The profiles were examined for
1/ax=0.3, and a Prandtl number of 20.

5 Results and Discussion

We built our problem based on an earlier problem developed by
Brady and Acrivos [8]. These authors considered the flow profiles
within an infinite channel, the surface velocity of which grows
linearly with the streamwise coordinate. They found that for Rey-

Group | Re=6574

0.8

0.2

0. -0 =0~ =@ = =0T o -0 -0

Re=933.2

$a

1
o
S
o4

0.2 0.4 0.6 0.8

Fig. 3 Longitudinal velocity profiles at Re=40, 90, 933.2, and 6574
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Re=40; Pr=20; 1/ax=0.3;\ =0.5
0.8+ 1
0.6f 1
>
0.4+ 1
0.2+ 1
8.1 0.‘15 012 o.és 013 0.35

g’y

Fig. 5 The heat transfer profile for Re=40

nolds numbers less than 310, there existed a single solution to the
problem. However, for Reynolds numbers greater than this value,
two additional solutions existed, which connected two different
asymptotic states for infinite Reynolds number values. This cur-
rent problem introduces a lower permeable wall and the additional
constraint of the upper and lower channel walls being at fixed
isothermal temperatures.

The Prandtl number used is significant in problems like these
where there a system undergoes simultaneous energy and momen-
tum transfer. We have chosen to examine water Pr=7, air Pr
=0.71, an arbitrary fluid of Pr=20, and a highly viscous fluid such
as oil with a Prandtl number of 100. Of interest to us is whether
the temperature and heat transfer profiles are affected by different
values of Reynolds numbers. In order to evaluate this hypothesis,
profiles were investigated for other Reynolds numbers of 90,
381.7, and 6574; these are chosen based on the group solutions
from Brady and Acrivos [8]. These profiles are shown in Figs.
6-8.

Quite obviously, the heat transfer profiles are different, with an
almost linear heat transfer profile between the upper and lower
channel walls for small Reynolds numbers such as 40 and 90 the
profiles of which appear to be quite similar. We can imagine the
fluid as being subdivided into infinitesimally thin layers parallel to
the plates. Fluid is dragged by the top plate with the accelerating
surface velocity, while the fluid closer to the bottom plate resists
the motion. The internal friction in the fluid causes a forward drag
in the layer immediately below each fluid layer. The temperature
at the upper wall is higher than that of the lower wall and there is
no major transfer of heat to the lower permeable wall. As the
Reynolds number increases to a value of 381.7, the heat transfer
profile appears as a skewed parabola with maximum heat transfer

Re=90; A=0.5; 1/ax=0.3; Pr=20
0.8- f
0.6- i
>
0.4- g
0.2- i
8.1 o.‘15 012 o.és 0.3

gy
Fig. 6 The heat transfer profile for Re=90
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Fig. 7 The heat transfer profile for Re=381.7

occurring at the midpoint of the channel. At this Reynolds num-
ber, the inertial forces are much greater than the viscous forces
and the accelerating surface at the top of the channel carries away
the top heated fluid layer faster thereby leaving a relatively cold
layer of fluid at the top. At the midpoint of the channel, there is
heated fluid relative to the fluid at the top of the channel. At the
lower part of the channel, the heated fluid is retarded by the slip
layer. The higher Reynolds number enables more heat to be trans-
ferred to the body of fluid contained within the channel. However,
even at this stage there is little heat transfer to the lower channel
wall. With an increase in Reynolds number to 6574, there is a
maximum heat transfer to the lower wall with the inertial forces
overcoming the viscous forces. The effect of permeability is the
most pronounced at this Reynolds number. The fluid layers at the
top and middle move fast leaving behind cooler fluid. The fluid in
the lower region of the channel sticks relative to the lower plate
and has a higher relative heat capacity.

Since the above heat transfer variations with Reynolds number
were, in fact, evaluated at 1/ax=0.3, it is of significance that we
evaluate these profiles again to ensure that what we have observed
are not, in fact, artifacts of the system as a result of these con-
straints. We do so through the evaluation of the heat transfer pro-
file for a Reynolds number of 40, with an altered value of 1/ax
=1 as opposed to 1/ax=0.3; all other parameters held constant as
in Fig. 5. Comparison of Figs. 5 and 9 shows that the transfer of
heat obeys the same profile although the values of the g’ param-
eters are different as can be expected. Similar plots using the other
Reynolds numbers provide a similar analysis.

For a Prandtl number of 7, which corresponds to water, the heat
transfer profiles are examined for a value of A=10 and for Rey-
nolds numbers less than 10. There is a change in the Nusselt

0.8

0.4r

Re=6574; Pr=20; A=0.5; 1/ax=0.3

0 0.5 1 1.5 2 2.5 3 3.5
g’(y)

Fig. 8 The heat transfer profile for Re=6574
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Fig. 9 The heat transfer profile for Re=40 with 1/ax=1

number with small Reynolds number, viz., as the Reynolds num-
ber slowly increases, more heat is transferred to the fluid within
the channel Fig. 10.

Our prime interest, however, is the evaluation of the heat trans-
fer profiles for various permeabilities. Using a Reynolds number
of 6574, we evaluate the changes in the temperature and heat
transfer profiles for values of A=0, 0.5, 3, and 10. We first con-
sider a value of A=0.001, in other words a channel, the lower wall
of which has an almost infinite permeability (since A=ca/VK).

This follows from Fig. 8 where maximum heat transfer occurs
at the lower wall. The heat transfer profiles for values of A=3 and
10 are presented in Fig. 11. A reduction in heat transfer is obtained
at the lower wall with an increasing value of A=3 with a simul-
taneous increase in heat transfer at the upper wall. At a value of
N=10, there is an almost equal balance of heat at the upper and
lower walls, with the maximum heat transfer occurring midway
up the channel. This behavior can be thought of in two ways
depending on the application in question: either a highly perme-
able layer can be used as an effective heat transfer agent for high
Reynolds number flow or a decrease in permeability facilitates
heat transfer throughout the channel, compensating for the high
Reynolds number of the fluid used.

Upon examination of the permeable wall for A\=3 and A=10,
there is evidence of a thin thermal boundary layer close to the wall
(see Fig. 12). This does not exist with the almost infinitely per-
meable wall. In fluid flows of this type, one expects that both a
velocity boundary layer and a thermal boundary layer will exist.
The relative ratio of the dependence of the two layers depends on
the Prandtl number of the fluid used.

0 0.05 0.1

0.15 0.2
g'(y)

Fig. 10 Variation in the Nusselt number for small Reynolds
number for A=10
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Fig. 11 The heat transfer profile for Re=6574 for values of A
=0.001, 3, and 10

Figures 13 and 14 demonstrate the weak effect of the permeable
layer for small Reynolds number of 5. The effect of the perme-
ability only affects a thin boundary layer of fluid close to the
permeable wall. These plots were done for both air and water
because of the initial motivation of the problem to model a geo-
thermal system. However, noting that there was a change in the
heat transfer at the porous boundary with different Prandtl num-
bers and recalling that there was a dependence on heat transfer
with changing Prandtl numbers from the papers by Kuznetsov and
co-workers [18,17], we also chose to plot the the variation in the

0.25—— ‘ ;
Re=6574; 1/ax=0.3; Pr=20
0.2+ J

0.15- J

0.05 & -

0.6 0.8 1 1.2 1.4 1.6

Fig. 12 Existence of thermal boundary layer close to lower
permeable wall for high Reynolds number flow
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Fig. 13 Variation in g’(y) with permeability for small Reynolds
number for water
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Fig. 14 Variation in g’(y) with permeability for small Reynolds
number for air

Nusselt number with an arbitrary fluid of Prandtl number 100
(Fig. 15). The results show, however, that the heat transfer profiles
for water and an arbitrary fluid of Prandtl number 100 are quite
similar.

6 Conclusions

The heat transfer profiles of a viscous incompressible fluid
flowing through a channel with an accelerating surface velocity
are examined by means of a similarity solution. The lower channel
wall is made permeable, the effect of which is introduced via the
slip boundary conditions. The permeability has an influence on the
heat transfer profile, the main results being that either a highly
permeable layer can be used as an effective heat transfer agent for
high Reynolds number flow or alternatively in a channel system
where the base can be made less permeable through the addition
of some coating substance. A decrease in permeability facilitates
heat transfer throughout the channel compensating for the high
Reynolds number of the fluid used.

When this system is studied in the context of a geothermal
system, once the geology of the sites are explored for small per-
meable base layers and an average Reynolds number is deter-
mined for the contained fluid, then the depth values can be suit-
ably determined to allow for maximum extraction of the high
temperature fluid. The study can be developed to include penetra-
tion of fluid thorough the porous base layer.

0.81

0.61

0.41

0.2

0 0.05 0.1 0.15 0.2
ag'(y)

0.25 0.3 0.35

Fig. 15 Variation in g’(y) with permeability for small Reynolds
number for an arbitrary fluid of Pr=100
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Nomenclature
a = half width of channel
B = basis of 3D space
¢ = heat capacity of fluid
Ex = surface velocity of fluid
e1,e,,e3 = 3D space vectors
f = similarity parameter
g = similarity parameter
K = permeability
p = pressure
Pr = Prandtl number
Re = shear Reynolds number
t = time
T, = temperature at permeable wall
T, = temperature at impermeable wall
Ts = stress component
X = streamwise coordinate
y = transverse coordinate
dimensionalized variable
slip grouping parameter
slip length
thermal conductivity
ga/VK
fluid density
fluid viscosity
= slip parameter
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Field Inside a Cylinder of
Semitransparent Dense Medium
From Directional Intensity Data

The purpose of this paper is to obtain the temperature field inside a cylinder filled in with
a dense nonscattering semitransparent medium from directional intensity data by solving
the inverse radiative transfer equation. This equation is solved in a first approach with

the help of a discrete scheme, and the solution is then exactly obtained by separating the
physical set on two disjoint domains on which a Laplace transform is applied, followed
by the resolution of a first kind Fredholm equation. [DOI: 10.1115/1.3154622]

1 Introduction

The determination of a temperature field inside an axisymmet-
ric semitransparent medium from optical infrared measurements
has been studied many decades ago, especially for gaseous media
where the refractive index can be ignored, in the sense where it
remains close to one for a large scale of wavelengths. Indeed, the
energetic spectral and/or directional radiative flux emerging from
such a medium allows the reconstruction of the internal thermal
distribution generating this flux. From this basic principle Milne
[1] was a pioneer in retrieving the temperature field in the super-
ficial area of the sun from directional and spectral intensities,
followed by Chahine [2] who determined atmospheric tempera-
ture profiles from spectral outgoing radiances. A similar calcula-
tion was performed by Ben Abdallah [3] who studied the gaseous
atmosphere of a giant planet from spectral intensities, including an
elegant regularization method to take into account the presence of
noisy data: in this latter case, a linearization of the Planck function
was done to separate the spectral and temperature dependencies.
Siewert [4] extended an equivalent approach with the help of or-
thogonal functions development to the determination of the inter-
nal source in an absorbing and scattering sphere from directional
emerging intensity data, and Li [5] achieved the restitution of the
temperature field inside a cylindrical medium from emerging in-
tensities with a standard functional minimization, ignoring the
transmission refractive effects generally induced with specularly
transparent reflecting surfaces due here to a constant reflection
factor. As mentioned before, in most studies dealing with gaseous
atmospheres, the refractive index of the medium is generally taken
as 1, from which no reflective and refractive effects can affect the
transmitted intensities. In this latter situation, an exact solution
can commonly be obtained with the help of a Laplace transform
when no scattering occurs. A significant improvement was
brought by Kocifaj [6] who took into account the long distance
ray deviation due to the continuous refractive effects by solving
simultaneously two inverse problems. More specifically devoted
to the cylindrical geometry, the study of Liu and Jiang [7] simi-
larly allows the reconstruction of absorption and temperature pro-
files inside gaseous axisymmetric flames. Considering two distinct
but analogous problems, they reconstruct the absorption field by
using an Abel equation and perform a standard minimization for
the temperature profile, due to the nonconstant absorption, and
note that a conjugate gradient method taking into account the

Contributed by the Heat Transfer Division of ASME for publication in the Jour-
NAL oF HEAT TRANSFER. Manuscript received June 19, 2008; final manuscript received
May 14, 2009; published online August 25, 2009. Review conducted by Ofodike A.
Ezekoye.

Journal of Heat Transfer

Copyright © 2009 by ASME

sensibility matrix gives, in this special case, accurate results when
treating noisy data without any regularization technique. Similar
approaches have been explored in retrieving the radiative proper-
ties of a given one-dimensional medium by using the observed
heat fluxes at the boundaries, for gray gases of unit refractive
index in a plane parallel slab [8]: The authors use a standard
minimization of an objective function with the help of several
efficient techniques, and show that increasing the noise intensity
in the input data significantly alters the restitution results obtained
with the Levenberg—Marquardt algorithm.

Nevertheless, for dense media, such as glasses, of significantly
higher absorption coefficients, the refractive index is much greater
than 1 and such effects can no longer be ignored. Although several
papers have been devoted to the restitution of the inner tempera-
ture field or the radiative source field, for plane dense media par-
allel slabs, and for Cartesian and cylindrical geometry devices,
(see Refs. [9-11] for instances, wherein an objective functional
minimization mainly based on the conjugate gradient technique is
applied, taking into account the sensibility matrix and looking at
the noisy data influence on the numerical procedure) very little
literature to our knowledge was interested in retrieving the tem-
perature field inside cylindrical semitransparent nongaseous me-
dia, with specularly reflecting surfaces from emerging intensity
measurements.

Viskanta et al. [12] used restitution techniques from deep area
optical measurements, but due to the particular geometry of the
system, only spectral intensities where investigated. Generally de-
voted to the “best” way in regularizing the experimental data for
determining internal sources from emerging intensities, like in
Refs. [13,14], these approaches for dense media do not take ad-
vantage of the particular properties of the operator governing the
problem’s physics, which are especially interesting in cylindrical
geometry. Ertirk et al. [11] applied three different regularization
techniques when retrieving an internal radiative source field inside
a three-dimensional device or inverse boundary condition estima-
tion. Since the discrete associated problem often reduces to a lin-
ear system of equations resulting from a Fredholm equation of the
first kind, they deduced that the corresponding problem is ill-
posed and needs to be regularized to avoid error amplifications.
They use a truncated singular value decomposition (TSVD) and
two related conjugate gradient methods, which produce analogous
and relatively accurate results for their problems, and conclude
that a simple TSVD of easy computation is generally an efficient
technique.

In the case of axisymmetric systems, most of the authors rec-
ommend using both spectral and directional measurements; Nat-
terer [15] and Sakami et al. [16] indicated that directional mea-
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surements do not allow the complete restitution of the internal
temperature field because of refractive effects, and use spectral
measurements to perform the complete reconstruction in a so-
called “missing data problem.” In spite of this, they indicate that
such a technique may be limited because of the absorption spec-
trum sensibility, since dense materials have smooth absorption
coefficient spectral fields in the transparency band. This major
problem, i.e., a weak sensibility with respect to the absorption for
dense media, can only give approximate temperature fields on a
few numbers of points, including a priori information on the field.
That is why one should prefer directional monochromatic intensi-
ties when reconstructing a complete thermal field inside a dense
cylinder.

In this paper, we determine the complete temperature field ex-
pression inside a cylinder of radius R filled with a dense semi-
transparent medium of nonunit refractive index n,. We first solve
the associated inverse problem by using a numerical approach. It
is shown that a simple lower and upper (LU) decomposition of the
associated matrix gives accurate results only in a restricted area
x=R/n, and fails in the complement region, x>R/n,, even for
perfect theoretical non-noisy outgoing intensities. This later obser-
vation crudely differs from what happens in a media of unit re-
fractive index, such as gaseous atmospheres, where a simple LU
decomposition gives exact results everywhere in the cylinder for
non-noisy data, and no regularization needs to be applied on the
input data. When the refractive index is 1, a simple TSVD [10],
for instance, gives accurate results also when adding perturbations
in the input data set. Here, for refractive indices strictly greater
than 1, a TSVD must be performed even with perfect non-noisy
input data to obtain acceptable results in the region, x>R/n,, and
only for relatively moderate refractive indices. The results are
even accurate when the number of discrete nodes is lower than a
threshold value (otherwise the method fails), strongly depending
on the medium’s refractive index. The scope of this article is then
to understand why regularization has to be performed on the glo-
bal problem even in the presence of perfect input data, contrary to
what happens for unit refractive indices. To do so, the input data
are considered as perfect non-noisy data obtained from a direct
calculation. The exact solution of the integral equation governing
the related temperature field is proposed by separating the whole
problem into two disjoint calculations on two separate sets. This
allows us to finally show that the problem does not belong to the
missing data problems, as frequently mentioned, although a dis-
cussion on the eigenvalues of the operator’s kernel demonstrate
why this solution is impossible to obtain in a practical way.

2 Geometrical and Physical Model

One considers a cylinder of radius R filled with dense
absorbing-emitting but nonscattering semitransparent medium
(STM), such as glass or crystal, mainly characterized by its spec-
tral absorption coefficient «, and its spectral refractive index n,.
The medium (amorphous or not), assumed to be made of dense
bulk material without heterogeneity, is weakly or not scattering,
and its absorption and refraction fields do not strongly depend on
the inner temperature for relatively large temperature scales. Fur-
thermore, the absorption (and refraction) spectrum of most of
dense media being generally extremely smooth on the major part
of the semitransparency band, spectral measurements of the
emerging intensities emitted by the body will present an extremely
bad sensitivity relatively to the wavelength. Also, angular col-
lected monochromatic (simulated) data have been preferred to a
spectral intensities set, at a wavelength where the lateral surface
of the cylinder is not opaque.

The directional intensities are collected in a tomographic plane
perpendicular to the cylinder’s axis at a given z, which allows the
problem to be considered to be one-dimensional, i.e., the emerg-
ing intensities at a given z only depend on the geometric variable
x due to the revolution symmetry.
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Fig. 1 (a) Internal trajectory of a ray emerging in the tomogra-
phic plane and (b) schematic description of the emerging inten-
sities at local position 0=x=R

Since the refractive index is assumed to be strictly greater than
1, the reflection coefficients at the lateral specular surface between
the semitransparent medium and the surrounding environment,
given by the Fresnel formulas, are functions of the local position
X. The geometrical path in the tomographic plane for a particular
emerging ray consists in a complete series of broken lines, as
illustrated on Fig. 1(a).

The outgoing intensity L, (x) at position x is given by the clas-
sical expression [17]

L (x) = 2i[1 = p(x)Jexp(= xR cos &)
MY 1 - p(x)exp(= 2k,R cos €)

I’LE[T(F)] =5 7
xfsz i ‘g\s‘”rzR—mCOSh(Kﬂrz -RZsin® §dr (1)
In this expression, L,(x) is the directional monochromatic inten-
sity emerging from the cylinder in a plane (x,y) orthogonal to the
cylinder’s axis z, for a given angle ¢ (between the emerging ray at
abscissa x and the normal to the lateral surface of the cylinder at
this point), simply related to the spatial position x by x=R sin ¢,
as depicted on the schematic in Fig. 1(b). The spectral absorption
coefficient is assumed to be known and spatially constant, and the
reflection factors p(x), either parallel or perpendicular, are classi-
cally given by the Fresnel formulas for transparent media, consid-
ering that the imaginary part of the complex refractive index is
much lower than the real one in the semitransparent band. T(r) is
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Fig. 2 (a) Intensity for a linear temperature field, n,=1.5, (b) intensity for a linear temperature field, ny=4.5, (c)
intensity for a sinusoidal temperature field, n,=1.5, and (d) intensity for a sinusoidal temperature field, n,

=4.5

the spatial temperature field to be reconstructed and Lg is the
Planck function. Noticing that from Descartes’ law sin ¢
=n, sin & it obviously becomes x=n,Rsin ¢ and Eq. (1) is
equivalent to the following integral equation:

f mLi[T(r)J ( [ ¥ ) o
[, ny
n)\ r -
n?
1- p(X)EXp(— 2k, \|R? - —2> Ly(x)
- N

> =g(x) (2
2[1 —Z)(x)]exp<— Ky \/R2 - %)

A

The unknown function is LY[T(r)], the useful data being the dis-
crete set g(x), where the mean reflection factor is defined by

5(x)=%[pi(x)+p”(x)]. In the previous expression, the subscript L
stands for the reflection factor related to the perpendicular polar-
ization, while the subscript Il denotes the parallel polarization.
The behavior of the directional emerging intensity with respect
to the local position x inside a cylinder of radius R=24 c¢m has
been reported in Figs. 2(a)-2(d), when the internal temperature
field is assumed linear, with T(x)=273.15+200(2-(x/R)),
and when the internal temperature field inside the cylinder
is a decaying sine function, with T(x)=573.15+100[1
—exp(=5x/2R)]sin(11mx/2R), for an observation wavelength X\
=15 um, with n,=1.5 and n,=4.5. It appears from these results
that increasing the refractive index apparently acts on the emerg-
ing intensities as increasing the absorption coefficient for a fixed
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lower refractive index, and that the shape of the emerging inten-
sities strongly depends on the internal temperature field inside the
cylinder for moderate refractive indices.

The physical model being fully described, Sec. 3 shall be now
devoted to the numerical discretization of Eq. (2) to obtain the
temperature field T(r).

3 Discrete Numerical Solution of the Integral
Equation

3.1 Numerical Scheme. The continuous equation (2) is trans-
formed into a linear system of N equations by using a spatial
discretization. One defines N control volumes (cells) of depth, Ar,
labeled i and whose center is characterized by x;=i-1/N-1R
=(i—=1)Ar for 1=i=N. In each cell, the temperature is supposed
constant, with T=T; on [x;=0,Ar/2[, T=T; on [xj—Ar/2,%;
+Ar/2[ for 2=i=N-1, and T=Ty on [R-Ar/2,x;=R].

For a refractive index strictly greater than 1, x;/n, <x;, and it
exists one and only one integer p strictly lower than i, i.e., p
e{1,...,i—1}, such that x, =x;/n\ <Xp4;. This simply means that
for a refractive index very close to 1, xj/n,=Xx; and this point
belongs to the cell that contains x;, i.e., Xj—1 =<X;/ny <X, and p
=i—-1. On the other hand, for large refractive indices, the point
characterized by its position x;/n, is much closer to the cylinder’s
center than x; and belongs to a cell far from the one that contains
X;. As an example, let us choose a cylinder of radius R=24 cm
and ny, =6, with N=25 for i=13, x;=12 cm, while x;/n,=2 cm,
from which x;/n,=xz and p=3.

A simple analysis shows that the corresponding integer p is
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defined by p=1+E(i-1/n,), where E stands for the integer part
of a positive real number x, with E(x)=m and m=x<m+1.
Hence defining the index
if x,= X <X, + Ar
_ P P7hn, P2
4= , Ar X
p+1 if xp+?sa<xp+l

the discrete form of Eq. (2) can be formulated by the following
system for 1=i=N-1:

_0 . Ar)? Xiz - 0
g(x) = L2ATsinh| ky\[| %+ = | =5 |+ > LATY
2 M1 k=g+1

X sinh < + r)z Xiz
i Xt+t—| - =

o K72 n?

. Ar\2 2
_smh[q (xk—?> —n—'i}}u_ﬁ(m)
2 2 2

. X . Ar X

><{smh(:<A Rz—n—'i>—smh[;q (R—?) _n_l}z\]}

(3)
The case i=N is a particular case, since, although L, (xy)=L,(R)
=0 is known, g(xy) is nonequal to O (except for a unit refractive
index) and undetermined because p(xy)=p(R)=1, then g(xy) has
to be extrapolated, for instance, from the other values.
Defining the index
Ar

R
Xj =—<X_+—
max n max 2

Jmax if

. Ar R
p+l if x; +—=—<x;
max 2 n)\ max

where jn=1+E(N-1/n,), the discrete form of Eq. (2) for i=N
is identical to Eq. (4) if t=N-1, while if t=N, it reduces to

1
g(xy) = L?\(TN)Sinh(K}\R \/1- F) (4)

A

Hence Egs. (3) and (4) can be transformed into the following
linear system whose solution gives the unknown intensities:

CLYM) =g (5)

+1

3.2 Numerical Results. In all that follows, the numerical ap-
plications will be done for a cylinder of radius R=24 cm, filled
with a semitransparent medium characterized by its refractive in-
dex ny,=1.5 or ny=4.5, and its spectral absorption coefficient
k=10 m™ at a given wavelength A\=1.5 um, the temperature
field being expressed by T(x)=573.15+100[1—-exp(-5x/
2R)]sin(11mx/2R).

The numerical results obtained by solving to the former linear
system are presented in Figs. 3(a) and 3(b) for N=50 and 500
cells. A simple direct LU decomposition of matrix C has been
used. It can be seen that the Planck function is correctly deter-
mined for x<R/n,. The method fails, however, in the area x
>R/n,, even with exact non-noisy data. The results are oscilla-
tory and inaccurate with an error increasing rapidly with the grid
refinement. However, the complete temperature field is correctly
evaluated for N lower than 27 in this particular situation. For N
=26 and perfect data, the retrieved Planck function field cannot
be distinguished from the exact Planck function at all internal
points inside the medium, while as soon as N=27, the retrieved
field is of poor quality in the neighborhood of the lateral surface
of the cylinder.

This threshold value of the number of cells, below which the
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Fig. 3 (a) Retrieved Planck function for N=50 and (b) retrieved
Planck function for N=500

reconstructed field is correctly determined for perfect data, is
strongly depending on the refractive index of the medium, as
clearly shown in Figs. 4(a) and 4(b). In these examples, the num-
ber of cells is set to N=27. For ny =1.5, the number of cells equals
the threshold value, and the reconstructed field is extremely close
to the exact one, except in a small neighborhood of the lateral
surface. On the contrary, when n,=4.5, the reconstructed field is
correctly estimated only in the range x<R/n, and of extremely
bad quality for x>R/n,. In this case the threshold value is N=9
and is lower than the number of cells used in the calculation.
Hence it appears that for refraction indices greater than 1, an
excellent approximation of the temperature field cannot be re-
trieved everywhere inside the whole cylinder, even for perfect
data without any noise. And for a relatively large refractive index,
typically in the range n, €[1.5,3] for many dense media, the
temperature field cannot be estimated in an important area of the
cylinder when using a simple LU decomposition. This is particu-
larly true for internal temperature fields of complex shape inside
highly refracting media, when using a consequent number of data.
The previous numerical inversion procedure has been then ap-
plied to a noisy data set with g(x)=g(x)(1+ &r)), where g(x) is a
perfect non-noisy data set obtained from a direct calculation, (r) is
a random number such that =1=(r)=1, and & is a parameter
characterizing the noise intensity. The corresponding results, for
the same internal temperature field and thermophysical constants,
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are depicted in Figs. 5(a) and 5(b) for various noise intensity
parameters, when the number of cells is 100 and 27, correspond-
ing to the above determined threshold value. For a large number
of cells, the numerical procedure is unable to produce satisfactory
results even for an insignificant value of the noise intensity, while
for a number of cells close to the threshold value, the results are
acceptable on the partial area x<R/n, for very small additive
perturbations. In all cases, however, the temperature field cannot
be obtained in the particular area x>R/n,.

One has to decide then, before dealing with noisy input g val-
ues representing a real experimental set of data, if Eq. (2) has a
solution for any x €[0,R] or if, as suggested by the previous
numerical study, Eqg. (2) can only be inverted in the range x
=R/n, and belongs then to the class of missing data problems.

3.3 Solution by the SVD Decomposition. Applying a singu-
lar value decomposition (SVD) of matrix C, ie, C
=U diag(w;)VT, where U and V are two orthogonal matrices, the
solution of Eq. (5) writes

LT = v[diag<vt_)]uTg (6)

Then, introducing the C matrix condition number cond C
=sup|w;|/min|w;|, leads for this example (n,=1.5) to the results
presented in Table 1. These results indicate that matrix C is highly
ill-conditioned for a large number of cells greater than the step

Journal of Heat Transfer

L [rx)]
5 Lilrx=0)]
2.5:—
2f
15F
1 :Lv’::-\. A /4"‘
ﬁ‘ /_T' [ - /'/
\5=10"1
0.5 !
\ !
Y A
Og——— 075" l 1l x
@ R
L[r(x)]
s Lilr(x=0)]
B Exaxt function
L 5=107" e
[ . T r
N ./'
X .
5[ .:
¥ it
0‘....1....1...!:I.|.. X
0 025 05 0.75 1R
(b)

Fig. 5 (a) Retrieved Planck function with noisy data for N
=100 and (b) retrieved Planck function with noisy data for N
=27

number. Since C is ill-conditioned, a powerful way widely used to
obtain an approximate solution is to minimize the residual |C
—Lg(T)—g| by zeroing the small eigenvalues [11,14,18]. To do so,
one chooses a regularization parameter « such that if \wj|
= a sup|w;|, then w;=0. For the numerical chosen example, the
direct calculation gives a correct solution for min|w;| =102, so
that the optimal « is about a=~10712,

The approximate solution obtained with a regularization param-
eter «=10712 is depicted in Figs. 5(a) and 5(b). For refractive
indices that are not too high, exemplified here in Fig. 6(a) when
n,=1.5, the approximate solution with a regularization parameter

Table 1 Condition number

No. of cells min|w;| sup|w;| cond C
10 9.783x 1078 5.598 5.722 X 10°
20 1.132x 10712 5.648 4,990 x 10%
50 2.447x 107V 5.673 2.318x10%
100 9.697 x 1077 5.681 5.858 X 10%°
500 2.420x 107V 5.687 2.350 x 10%
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tion: @=107%?, n,=1.5, and N=500 and (b) retrieved Planck func-
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is very close to the exact one, even for a large number of cells
(500) on the range r=R/n, and also on the set [R/n,,R], except
at the single point r=R. This allows us to admit that, from a
practical point of view, a simple discretization of Eq. (2) followed
by a singular value decomposition of matrix C and zeroing the
small eigenvalues lead to a satisfactory solution by using only
directional and no spectral intensities. However, for important re-
fractive indices, and/or important absorption coefficients, as illus-
trated in Fig. 6(b) when ny=4.5, a regularization procedure gives
a good approximation for r=R/n,, as when a single LU decom-
position is performed and fails to obtain a satisfactory solution on
[R/ny,R] even for large scales of the regularization parameter
when the number of cells is important (500). But for moderate cell
numbers (100 for instance in this case), the results are of accept-
able accuracy for very small regularization parameters. This zero-
ing procedure works well enough when the number of cells is not
too important, which is generally the case in practical cases. How-
ever, for cylinders of large dimensions with internal temperature
fields of complex shapes, for which a significant number of data
may be necessary, and if the refractive index is relatively high, the
proposed numerical scheme will produce sometimes poor quality
approximations of the temperature field.

A SVD has also been performed for a cylinder of 24 cm radius
filled with a STM of absorption coefficient x, =10 m™ and re-
fractive index ny=1.5 submitted to a sinusoidal temperature field,
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Fig. 7 (a) Retrieved Planck function when using a regulariza-
tion parameter, N=100, and (b) retrieved Planck function when
using a regularization parameter, N=27

with noisy data for two different cells numbers when the noise
intensity is 1% (i.e., 6=1072). As illustrated in Figs. 7(a) and 7(b),
a SVD gives poor quality results even for relatively high regular-
ization coefficients, especially for a large number of cells. When
this number tends toward the threshold value, the results are more
accurate and acceptable; also for important regularization factors
in the range x=R/n,, but remain of poor quality when x>R/n,.
This latter remark enhances that the restitution of the temperature
field inside a cylinder of dense STM with high refractive indices
suffers from two major restrictions: (1) due to the nonunit refrac-
tive index, the restitution cannot be performed on the range x
>R/n, without any regularization procedure on the governing
operator, even for perfect non-noisy data, and (2) the presence of
weakly noisy data significantly alters the above operator regular-
ization procedure in such a way that it necessarily implies an
initial preconditioning of the useful perturbed data.

To avoid at this stage a discussion on the possible techniques of
data conditioning, such as filtering, and, moreover, to understand
why such an operator regularization (even for non-noisy data) is
necessary, i.e., why a direct LU decomposition gives only a good
solution on the range r=R/n,, we shall determine in Sec. 4.1 the
exact solution of the integral equation (2), when no perturbation is
added to a perfect set of emerging intensity data. If, as suggested
by a simple SVD for perfect non-noisy data, there is an exact
theoretical solution on the whole set 0=r =R, this opens the way
to studies whose scope is the complete restitution of a temperature
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field inside a cylinder filed with a dense STM in presence of noisy
directional emerging intensity data from an experimental appara-
tus.

4 Exact Solution of the Integral Equation

4.1 Formal Exact Solution. By using the following variables
change:

2,2
X
u=7, y= K‘—Z
nx
v=Th-u, z=15-y
and introducing functions F and G defined by

F(v):L?\[T<@)], G(U):29<m\—7§—z) ®)
Ky Ky

one obtains
z
cosh(\z - v)
[ romtis,
v=0

NZ-v

@)

=G@) 9)

In Eq. (9), z €[z;,2,]=[(1-1/n2)73,72] can never reach zero if
the refraction index is different from 1, and the classical theorems
on the Laplace transform can no longer be applied. To avoid this

difficulty, an origin translation is applied by introducing z*=z
-7, €[7;,25]=[0, 7/n?], from which one deduces

JZ Iu )COSh(:Z_ Daw =i (10)
u*=0 vz —u
with u*=v-z;, F(u*+z,)=J(u"), and ﬁ(z*):G(z)—fﬁizoJ(—u*)

x(cosh(\e“'z*+u*)/(xz +u*))du®.
The boundary values of these functions can be written explic-
itly

on? (* yLoT
SRR s
N 2

n Y T3 ‘
ny —sm(—"e
}\
K\ 5
) R cos(—k\e‘s2 - xz)
N n,
== g’(s) =3 ds
TRy J oy Vs? = X

where g’ is the derivative of the data set g. Equation (14) is the
exact inverse solution of Eq. (2).

Note that the complete data set g on the whole set [0,R] must
be used to compute the temperature field in the zone [0,R/n,],
and that this field depends on the temperature field in the region
[R/ny,R]. Under this form, Eq. (14) looks like a second kind
Fredholm equation, however, it is not an integral equation.

Indeed, the previous equation is strictly equivalent to the analo-
gous form

R
&(r) - XJ Dy)K(r,y)dy = F(r) (15)
y=R/ny
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VRZ - x?

R2
cos(—\Rz—x )cosh KA Y - =
\/y n)\

50 =0l 1(2)]. s =imon
N

R/ny
L[T(r)Jcosh(k,r)dr
=0

H(0)=0, ﬁ(z;)=2x)\f (11)
I:
Equation (10) is a Faltung convolution equation of kernel K(t*)
. =
=cosh(\t*)/\t*, whose Laplace transform is [L(K)](p*)
=(Vmr/p*)exp(1/4p*). Applying a Laplace transform to Eg. (10)

leads to
1 z
LgHi)]z_f i 20E D)
ny ™ v=0 \Z f-v

With the help of the previous variables and functions changes, the
right member of Eq. (10) can be reformulated under the exact
form

J o )cos(\z —v)d
v=0

NZ" -v

NPT G )
= | AR an

Ky F=X*/H)\ dr
where x*/n, =/(x2/n)+(1-1/n?)R2. Replacing H by its value in
terms of g and L0 functions and using the two successive variables
changes defined by r*=1r?=(1-1/n?)R? and s=n,r", finally lead
to (after a straightforward calculation)

(12)

(13)

dy

by

(14)

where ® is the unknown function defined on r e [0,R/n,] for the
first left-hand side member, while the definition interval of the
integral is [R/n,,R]. One can notice that from the exact definition
of the g function given by Eq. (2), Eq. (14) can be replaced by the
strictly equivalent equation

Ky 5
cos(—”v‘s2 - xz)
n

h'(s)—2——"ds (16
O— = (16)

R
LO[T( X )]ZLJ
n)\ TK) s=x

where the h function is defined by
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h(x) = o cosh( \r2-x )ds (17)
= nyr2 = x N

The h function is the generalized g function for ny,#1 and is
equivalent to g when n, =1.

Under this latter form, it is therefore obvious that the inversion
of Eqg. (2) only leads to a partial temperature field on [0,R/n,].
Note also that the function h cannot be simply related to the
experimental set g and cannot be applied at this stage from a
practical point of view to determine the temperature field.

4.2 Numerical Verification. From the exact expression (17)
of the function h, it is easy to prove that Eq. (14) is verified at
x=R. We present in this section the results obtained by solving
numerically Eq. (14) with the numerical scheme presented in Ap-
pendix A.

The restitution of the temperature field, as well as the evolution
of the function h, analogous to the data g set for unit refractive
indices, are presented in Figs. 8(a)-8(d) for ny,=1.5 and n,=4.5
with N=500 and x,=10 m™, for exact h data and for “data”
obtained from a calculated g set by a SVD of matrix C, followed
by a simple zeroing with =102, when no perturbation is done
on the exact g data. The numerical computation of Eq. (14) gives
excellent results compared with the exact ones, even if the tem-
perature field is not correctly estimated in the neighborhood of x
=R/n,, due to the fact that h’N is forced to have a finite value.

The main interest of this operation here is not to obtain the
temperature field on [0,R/n,], but to calculate the generalized h
function on [0,R], from which the partial temperature field on
[R/n,,R] is governed by the integral equation
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R 2
f P ;- M osh< A\ rz—x_z)dr:g(x)‘h(x):w(x)
r=R/n X n)\
A r-=
ng
(18)

The function ¥ is completely known on [0,R], and Eq. (18) can
be considered to be a first kind Fredholm equation for x
e[R/ny,R], where W is the data function of the equation,

K(r,x)=r cosh(x,\r?— (xz/nf\))/\/r2 (x2/n2) is the kernel of the
integral equation, and L? AL T(r)] is the unknown function to deter-
mine on [R/ny,R]. Equation (18) only depends on the unknown
part of the temperature field, which means that if this latter equa-
tion has a solution, then the global problem summed up by the
general Eq. (2) does not belong to the class of missing data prob-
lems, as frequently mentioned, and there is hope to find approxi-
mate numerical procedures allowing the restitution of the com-
plete temperature field on the whole set [0,R]. If, however, Eq.
(18) has no physical admissible solution, directional intensities
data are unable to give a complete description of the temperature
field inside the cylinder.

4.3 Discussion on the Kernels of the Operator. The detailed
behavior of the exact W function with respect to the absorption
coefficient is depicted in Figs. 9(a)-9(d). Figures 9(a) and 9(b)
detail the relative behavior of the three functions g, h, and ¥ on
the whole set [0,R] for two refractive indices (ny=1.5 and n,
=4.5) when x,=10 m™. In both cases, ¥ is an approximately
linear slowly decaying function for this absorption coefficient on
the major part of the set [0,R], and it increases near the lateral
surface of the cylinder. The influence of the absorption coefficient
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Fig. 9 (a) Evolution of g, h, and ¥ on [0,R], (b) evolution of g, h, and ¥ on [0,R], (c) evolution of function ¥
on [R/ny,R] for various absorption coefficients, n,=1.5, and (d) evolution of function ¥ on [R/n,,R] for

various absorption coefficients, n,=4.5

for a given refractive index has been reported in the two last
figures: It shows, whatever the refractive index is, that W is a
decaying function for absorption coefficients higher than a critical
value depending on the refractive index and the cylinder’s radius,
and W increases as soon as the absorption coefficient is lower than
this threshold value.

Nevertheless, the sensibility of W on the useful set [R/n,,R] is
relatively poor with respect to the internal position x, especially
for high refractive indices for which the amplitude of ¥ is low.

Before examining the particular properties of Eq. (18), it is
worth noting that its discrete form is as follows.

Ift=N-1
2 xgrAr2 - N-1
L?\(Tt)[sinh<xﬂlr2— —'2-” + > LTy
/ARy, ket
X-2 Xy+Ar/2
X Siﬂh(K)\\/rz——Jz‘) +L())\(TN)
NN/ Jx-arr
2\ |?
><[sinh<;<A r2——‘2-)} =W(x;) (19)
Nx/ Jr-ar2
If t=N,
2\ [F
LY(Ty)| sinh{ /12— = =V(x), 1=j=N
n\/ Irm,
For j=N the solution is
g(R)

LQ(TN) =

1
sinh(:cKR \/1 - —2>
n

Journal of Heat Transfer

When n, is very close to 1, or equivalently when the number of
cells is small, Eq. (19) gives the exact value Ty. Since one must
seek the exact solution on [R/n,,R], the discrete numerical ap-
proach involves the grid labeled t=j=N and leads to the reso-
lution of a linear system of N-t+1 equations with N-t+1 un-

known quantities, formally written as ELQ(T)=\I’. We present in
Figs. 10(a) and 10(b) the numerical results of such a calculation,

when a SVD followed by a zeroing is performed on the matrix C
and when the number of cells is exactly N-t+1, with N=100 and
k,=10 m™. For a refractive index n, =1.5, this leads to N—t+1
=34, and for ny=4.5, one has N-t+1=78. As it can be seen, there
is a slight improvement (relatively to a global discretization of Eq.
(2)) when Eq. (18) is discretized and a SVD is applied. A numeri-
cal solution, although of poor quality, can be exhibited, which let
us believe that the integral equation on the partial set [R/n,,R]
has an exact solution.

With the notations used for the Laplace transform, Eq. (18) can
be rewritten under the following form:

@-und /75— |cosh(\z - n
[ B |y, ()
v=R/ny

K\ K\
The variable z is such that z e [(1-1/n?)73,(1-1/n})72] ¢ [0, (1
-1/n?)73]. Introducing the new parameter and variables o
=7oV1-1/n2, w=1-v/a*? €[0,1], and 2’ =n?(z/ a*2-1) € [0,1],
as well as the two following functions: F(w)
=LUT[RY1/n?+(1-1/n?)w]} and W(z')=W[Ry1-(1-1/n)z'],

easily lead to the simplified equation

VZ-v
(20)
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> I W+ —

270\Vn -1 1 2rVnZ -1 —\ 1 n:

Kp(w,w) =n} Chi(Lw/W+ —2>—Chi<°\—”\w>+—|n .
Ny n n, 2 W

N

Z!
cosh(a*\/w+ —2>

N\
\/ :
W+ =
2
ny

(w,z') € [0,1] X [0,1]

F(w) dw=Ww(z"),

fl
w=0

(21)

Equation (21) is a first kind Fredholm equation of data ¥ on [0, 1]
and unknown function F on the same range, with a nonsymmetric
kernel K(W,z’):cosh(a*y"w+(z’/ni))/V/W+(z’/ni), where
K(w,z") #K(z’",w). The two symmetric left Kg and right Ky as-
sociated kernels are defined by

1
KG(W,Z')ZJ K(v,w)K(v,z")dv
v=0

1
Kp(w,z") = K(w,v)K(z',v)dv
v=0

(22)

It can be shown that they can be expressed as follows:

. 27—0\“’”)2\_1 [ 2 3 27'0\,@ —
Kg(W,w) = Chi| ——=——yw+nj | - Chi| ——=——w
n

X n\
1 2
w+n?
+—In< ) w#0
w
[~2
| v -1 —— ——
KG(W,Z')ZChI|:O—)2\(\W+ n§+\z’+ni)]
nx

[n2 In2
ns-1 ~— — . ns-1 —
—Chi{m—g(\w+ \z')]+cm<—7‘” 2 |\w
nx nx

[\2
— ns—1
_ \Z’|> _Chi<7'0\n—>2\

/ 2 [51 2
[Ww+ni =~z +n5| |, (23)
A

7' #Fw
and

w#0

Kp(w,z') =n?

where Chi(x)=1/2[Ei(x)—E;(x)]=y+In x+=,;2x%/ (2k(2k)!) is
the hyperbolic cosine integral [19].

Since chi is a strictly growing function for x>0, Kp(w,z’)
(respectively, Kg(w,z’)) is a strictly positive function on
10,11 ]0,1] and from the previous definition of chi, Kp(w,z’)
(respectively, Kg(w,z’)) is obviously a continuous function on
10,1]1%]0,1]. Furthermore, a simple analysis shows that if Kp g
reaches a minimal value, where Kp ¢ stands indifferently either
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2 [2 1

ns—1 1 1 ng-1 ~— —.
Chi[%\—*( \/w+—2+ \/z’+—2)]—chi[m—”(\w+ \VZ')

ny ny ny ny B

[~2 [ A2
[TV -1 — — [ VN5 =1
+Ch|<o—xI\W—\z’|)—Ch|(O—A
N N

"#EwW (24)

i

o
n n

for Kp or Kg, this value is located on the straight line w=z'.
Then for the right kernel Kp, noting (2=1.1996787 the solution
of tanh Q:_l/() it is possible to prove that if 7
= (nAQ)/\s’nf\—l, Kp(w,w) is a strictly positive decaying function
on 10,1] with lim, _o[min,10,1] Kp(w,w)]=n? In(1+1/n2),
and if 75> (n,Q)/\Vn2-1, Kp(w,w) is a strictly positive function
that reaches a minimal value at a given uy(7) e ]0,1[ with
Iim,oﬁmuo(ro):o and Iim,oﬁm[minWE]O,l]KD(w,w)]:+oo. The
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70>M2/n2-1, and (d) evolution of K, for 7,>n,Q/yn2-1

evolution of Kp(w,z’) is depicted in Figs. 11(a)-11(d) for two
absorption coefficients (1 m™ and 10 m™) and two refractive
indices (1.5 and 4.5).

. . 5 =

In the first case (Figs. 11(a) and 11(b)), 7p= (n,€2)/yn;—1 and
the minimal value of Kp(w,z") is Kp(1,1), (0.860 for ny=1.5 and
1.032 for ny=4.5). When the refractive index increases, the values
taken by the right kernel significantly increase, but the global
behavior remains unchanged. For 7> nAQ/\/ni—l the minimal
value of the kernel grows rapidly (Figs. 11(c) and 11(d)) when the
absorption  coefficient increases, since min,, .17 Kp(w,w)
=7.498 for ny=1.5 and min,, c10.17 Kp(W,w)=12.480 for n,=4.5.

The two symmetric kernels are such that [Kpglf3
=t ol KB g(w,z")dz' dw=ADC(a* ) <+, where
A?’G(a*,n)\) (related either to the right or left kernel) is a com-
plicated function in terms of power, logarithm, exponential, and
product of Chi and Shi (hyperbolic sine integral) functions of
finite value for o*# 0, which is the case since ny # 1.

Hence Kp g(w,z") are Ly-kernels on [0,1]x[0,1]. Obviously,
W is a L,-function on [0, 1], which guaranties [20] the existence
of a solution for Eq. (21), whose formal expression is

n

F(Z’) = lem E )\kak,u,k(z')

n—+e } o1

& lim

n—+o

1 n 2
f lF(Z') - )\kak,U«k(Z'):| dz’=0
z k=1

’=0
(25)

where lem commonly stands for the usual limit in mean [20]. The
(Mn)ne|n are the eigenvalues associated to the system (un)ncn OF
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the  right  kernel  eigenfunctions, that is,  u,(z')
:)\ﬁf\}vzoKD(w,z’)un(w)dw, and (ay)nen are the Fourier coeffi-
cients of W relative to the system (up)nen, i€, W(Z')
=S5 ann(2') With @,= 7, W(2) pa(2))d2".

Considering one-normed eigenfunctions, i.e., functions such
that [L_ouA(u)du=1, the eigenvalues associated to the right kernel
are such that \2=1/[Kp|,.

The exact eigenfunctions and eigenvalues cannot be obtained in
an analytical way, and we shall only determine a numerical ap-
proximation of the solution by using the method presented in Ap-
pendix B.

As an example, the first ten eigenvalues of the right kernel are
listed in Table 2, with respect to the numerical quadrature (Gauss
quadrature) order M, in the case where R=0.24 m, x, =10 m™,
and n,=1.5, with tr(Kp)=8.805 and ||Kp|,=8.743, tr(Kp) being
the trace of the kernel Kp.

One can see that limy,_,...1/\2=||Kp||,; this result has been ob-
tained for a very large spectrum of various situations, so that one
may here postulate that 1/\2=|Kp|,. Hence, since it is observed
that tr Kp=||Kpl|,, one deduces that all the ordered eigenvalues
1/)\ﬁ, except the first one, quickly tends toward zero with n. This
main result is strongly amplified when the refractive index in-
creases. Since lim, _..|Kpll,=+, the first eigenvalue 1/\2 hasa
high magnitude for large absorption coefficients, while the other
eigenvalues rapidly tend toward zero. It is then not surprising that
the convergence of the eigenvalues is extremely slow. For the
considered example, the convergence is only reached for the four
first eigenvalues with a 4000 point quadrature. At such an order,
because of multiple round-off errors, a Given, Householder, or
Jacobi reduction completely fails in finding the eigenelements,
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Table 2 Eigenvalues of the right kernel

N2

n M=10 M =100 M=1000 M =2000 M =4000

1 8.740 8.743 8.743 8.743 8.743

2 5.167 X 1072 5.821x 1072 5.822x 1072 5.822 X 1072 5.822 %1072
3 1.295x 1073 3.840%x 1073 3.876x1073 3.876x1073 3.876x 1073
4 1.520 X 1075 4.393%x 107 4.806%x 107 4.807 %1074 4.807x 1074
5 6.152x 1078 5.589 X 1075 8.250 X 1075 8.267 X 107° 8.269x 1075
6 2.870x 1078 6.438x 1076 1.727x 1075 1.750 X 1075 1.754 X 1075
7 1.754x 1078 6.426 X 1077 4,030 %1078 4.259x 1076 4.312%x107°
8 1.344x 1078 5.548 x 1078 9.668x 1077 1.124x1076 1.178x 1078
9 8.018 X 107° 2.315%x1078 2.261%x1077 3.043 %1077 3.347x 1077
10 5.692 x 1079 1.865x 1078 5.063x 1078 8.107x 1078 1.028 x 1077

and a SVD appears to be the best technique in finding the com-
plete eigenelements. Nevertheless, due to the extremely slow con-
vergence of the eigenvalues up to a very high quadrature order,
the partial sum f(z) == N\ayui(2) is not correctly evaluated in
most cases.

4.4 Final Remarks. Now, one knows that an exact solution of
the problem exists and that no spectral intensities theoretically
need to be added to the directional ones to obtain a complete
solution on the set r €[0,R]. This means that determining the
temperature field inside a cylinder with only directional intensity
data does not belong to the class of missing data problem, and that
it has a theoretical exact solution. However, from a practical point
of view, this exact solution is unreachable for at least two reasons:
the experimental data are never perfect, and particularly in this
case, the problem is extremely ill-posed because of the intrinsic
properties of the kernel governing the Fredholm equation on the
set [R/ny,R], contrary to what happens on the set [0,R/n,],
where a smooth regularization is most often powerful. Even with
sophisticated filtering treatments applied to experimental data, or
at the limit case of perfect non-noisy data, a numerical approxi-
mate solution is very hard to obtain on [R/n,,R], even when
using a discretization of the integral equation, followed by a SVD
of the discrete operator and zeroing of its too small singular val-
ues. This limitation is essentially critical for media with high re-
fractive indices and of internal temperature fields of complex
shape. On the other hand, for usual dense media with indices not
too far from 1.5 and smooth internal temperature fields, a SVD
and zeroing work very well in practice with no noisy data.

Finally, we can note that a little refinement can be provided to
the search of the temperature field on [R/n,,R] by adding spectral
measurements. Indeed, integrating Eq. (18) on x € [R/n,,R] gives
for the first order moment

iy L[ T(r 2
f J i LSLT(N)] <>] ( . /rz—%>drdx
X=R/ny r=R/ny / _r A
)\

= f XW(x)dx
x=R/ny

That is, after a simple integration

(26)
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R 2
2 R

f x[cosh(m X 4>
x=R/ny N\

2

R—Z) ] L2[T(x)]dx

X - cosh(;q X2 -
A

R
= J xW(x)dx
x=R/ny

which is an integral equation of the form fr Rin, K(r)L [T(r)]dr
=G, where G is a constant for a given wavelength and K is the
kernel depending only on one variable for the same wavelength.
Then a discrete form of Eq. (27) can easily be obtained, for sev-
eral wavelengths where the absorption sensibility is significant.

(27)

5 Conclusion

In this paper, we proved than an exact solution of the problem,
which consists in determining the temperature field inside a cyl-
inder filled with a dense semitransparent medium of nonunit re-
fractive index only from directional emerging intensity data, can
be theoretically found in the complete domain [0,R], when the
useful intensity measurements are perfect non-noisy data. A par-
tial solution on the set [0,R/n,] can easily be found from a
Laplace transform extension applied to the convolution equation
governing the problem, and allows the exhibition of the general-
ized “data function h,” from which the auxiliary function W is
determined on the complete set. This latter function is the datum
of the first kind Fredholm equation, for which an exact formal
solution on [R/ny,R] can be proposed. However, even with per-
fect intensity data, this exact theoretical solution cannot simply be
reached on [R/ny,R] because of the intrinsic properties of the
kernel governing the integral equation to be solved to obtain the
corresponding temperature field. Indeed, the ordered eigenvalues
of the symmetrized right kernel are such that the first one corre-
sponds to the operator’s norm, from which all the other ones
quickly tend toward zero, since their sum equals the operator’s
trace minus its norm, a quantity extremely close to zero for all
absorption coefficients and refractive indices. Then, due to a very
slow convergence in the eigenvalues’ computation, high order
quadratures have to be used, leading to extremely ill-conditioned
discrete operators, for which standard Householder reductions fail
in determining the associate eigenfunctions and solution. That par-
ticular behavior of the kernel and its eigenelements also explains
why a SVD followed by a zeroing of the smallest singular values
generally gives poor approximate solutions for high refractive in-
dices and/or absorption coefficients. This means, in other practical
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words, that in spite of sophisticated filtering and/or regularization
procedures on noisy experimental data, an acceptable approximate
solution of the initial problem on the whole set [0,R] cannot be
exhibited unless a judicious regularization of the governing opera-
tor itself is applied.
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Nomenclature

R radius of the cylinder (m)

ky = spectral absorption coefficient
(m™)

n, = spectral refractive index

T = temperature (K)

Ly(x) = directional monochromatic inten-
sity (W m=3 Sr1)
LY(T) = Planck function (black body
intensity)
g(x) = data set

p(x), pL(x), and p;(x) = mean reflection factor, perpen-
dicular, and parallel polarization
reflection factors

generalized data set

data function on the range x
>R/ny

Xj = center of a discrete cell labeled i

h(x) =
Wx) =

N = number of discrete cells in the
cylinder
Ar = depth of a cell (m)
E(x) = integer part of a real number x
Ci, Chi = cosine integral, hyperbolic cosine
integral
Ei, E; = exponential integral, exponential
integral of first order
a = regularization parameter
& = noise intensity factor
=K\ and 7p=k\R = optical depths
y = Euler-Mascheroni constant
K(w,z") = nonsymmetric kernel of a first
kind Fredholm integral equation
Kg and Kp = symmetric left and right kernels

eigenvalues and eigenfunctions of
the right kernel Kp

ey and (upnein =

Appendix A
Writing

K )
R h’(s)cos(—A Vg2 - x,z) N-1

f L ds= ) Iy
S=X; k=i

. Vs? =2

1 h'(Art+ xk)cos[ﬂ\(Art +x)% - x,z]
Ar =0

for 2=i=N-1 and Hy(t)=h(Art+x,), leads to H' (t)=Arh’(Art
+x) =a +bt+ ¢ t?+d,t3, with a development of the H',(t) func-
tion in cubic splines, H',(0)=a,=Arh’,, H' (1)=ay+by+c,+d
=Arh’,,,, and H",(0)=by =Dy, where Dy is obtained from the
linear system

dt
V(Art+ )% = X2

N-1

> Ay =3Ar(h',—h')
k=1

Journal of Heat Transfer

N-1
> ADy=3Ar(h,-h') 2=i=N-1

k=1
N-1
> AnDy=3Ar(h' = h'y_) (A1)
k=1
with
2 10 . 0
1 1 0
0 1 4 0 0
A=
0 01 4 100
0 ... 0 1 41
0000 0 0 12

the coefficients a,, by, ¢, and d, being related to the Dy by ay
=Arh'k, bk:Dkr Ck:3Ar(h,k+l—h,k)—2Dk—Dk+1, and dk
=2Ar(h' ~h’y,,) +Dy+Dy,1. Hence previous integrals I,; become

2
n, ~ o~ 2n . [ KoY
Iki: Bk+ Dk<UZ+Xi2__2)\> S|n<_
KyAr Ky ny,
/2 2
~ VXjep1=Xi
Zn)\Dk K)\U o
v COS| —
K\ ny [2_2

v=\e“‘xﬁ—xi
1
Ar =0

Xcos[?xi sinh(yu + Bki)]du
A

[A+ EkXiZChz(akiu + Bii)]

(A2)

The different quantities appearing in the l,; integrals are defined
by the following relations:

KTAr o A T AR T dx

~ i _ 3dek _ ldzxk

KTArr AR T2 d¢
B ot 10
KTAPT 6]

k+ k= (i - 1)?
ai=In , - ., and
k-=1+v(k-1)2-(i-1)?

k—1+(k-1)2-(i-1)?
g2 T

The integral in I,; being nonanalytical is computed numerically
with a Gauss quadrature. For i=1, the integral I,; simply reduces
to
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n ~ nCp =~ 2n? 2n,D
Iy = A B, + Ak < 2>\> sin(M) ( APk
K}\Ar Ky n}\ Ky

)\
~ o) (% A KX KX
-Cy v cos(L) [ ( A k”) |<”—k)]
N N

(A3)
where A;=0, B;=b;/Ar, C;=c,/Ar?, and D;=d,/Ar? for k=1.
Ci stands for the integral cosine [18], with Ci(x)=1/2[Ei(ix)
+Ei(=ix)]=y+In x+ 2.7 (-1)*3/2k(2k)!, y being the Euler-
Mascheroni constant and Ei being the exponential integral. The
local derivatives of h are then obtained from a centered finite
differences scheme, with h’;=0, h’;=hj,—hi_1/2Ar for 2<i
= N_l, and h,N:3hN_4hN_1+hN_Z/ZAr:hN_2_4hN_1/2Ar.
Note here that for the numerical calculation h’y is forced to have
a finite value since one should have h'=~cc.

Appendix B

With the help of a numerical quadrature, the eigenelements are
the solution of the discrete equation uf'=\
=)\2KP diag(w)ux", with KP being the discrete form of the con-
tinuous operator Kp, with KD Kp(wi,wj). Hence the eigenvalues
for the discrete problem are the solution of [KD diag(w)

=1/N\?1]u"=0, where 0<1/\? <||Kop|l,. Since |[Kp|, quickly tends
toward important values as soon as «, increases, one writes
1/N2= a|[Kp|, and KD—HKDHZK”, from which the previous prob-
lem is equivalent to KD diag(w) u"= apu™ with 0< a, =1, where
KPisa square M X M matrix and u" is an M vector.

The global matrix KP diag(w) of eigenvalues a,, is nonsymmet-
ric, contrary to the matrix diag(w)RD diag(w), from which the
initial discrete problem is equivalent to Au"=a,Bu", where A
:diag(w)RD diag(w) is a symmetric matrix, and B=diag(w) is
obvrouslx a nonsrngular positive definite matrix, with B
=diag(Vw)diag(\ ). Then the elgenvalues o | are the ones of the
matrix D:dlag(l/v‘w)A dlag(l/\«‘w):dlag(\rw)KD dlag(vw), and
the eigenvectors are determined by M"-diag(l/\““;)v” The con-
dition for the set (4"),<|n to be an orthonormal basis in the sense
of the L2 -scalar product leads to fu o™ (u) ™ (u)du= &y

=xM _le,u ,u E 1VJ VJ where "' are the orthonormed eigen-
vectors (|n the usual sense of the scalar product for vectors) of the
matrix D, so that ,u“—drag(l/\«w)v are the orthonormed eigen-
functions for the L,-scalar product of the operator KP.

Furthermore, since EMlaJ—tr[KD diag(w)]=%] 1wJKB, it obvi-
ously comes  that  limy_ e EJ-:laj—Ilmh,H+so po leKD
=[1_oKP(u,u)du=tr(KP) and the series San)ne|n- is absolutely
convergent since tr(KP) < +oe,

Since matrix D is real and symmetric, its eigenelements can be
both obtained thanks to a Jacobi transformation, or it can be re-
duced to a tridiagonal form with the help of a Given’s or House-

AZsM
E 1wJKJ,U.J<:>,u
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holder’s reduction to calculate the eigenvalues and vectors. How-
ever matrix D is extremely ill-conditioned, with limy,_.,..(det D)
=0, and even for small Ms, only a few eigenvalues are of signifi-
cant magnitude when the absorption coefficient is moderate. Then
Jacobi, Given, or Householder reductions fail in finding the
eigenelements even at low orders. However, since D is real and
symmetric, its eigenvalues equal its singular values obtained by a
SVD, the eigenvectors of D being contained in the orthogonal
matrix U given by the SVD, such that D=U diag(1/\?)UT.
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Conjugate heat transfer study of a backward-facing step cooled by
a two-dimensional laminar incompressible wall jet has been car-
ried out. The study is performed to find the isotherm patterns,
conjugate interface temperature, local Nusselt number and aver-
age Nusselt number by varying the geometry of the solid slab.
Different step length, step height, and slab thickness are consid-
ered for conjugate heat transfer study. [DOI: 10.1115/1.2717251]

Keywords: Laminar plane wall jet, flow over step, conjugate heat
transfer, effect of geometry, Nusselt number

1 Introduction

The flow emanating from a two-dimensional (2D) plane wall jet
over backward-facing step is shown in Fig. 1 where the main
features and regions of interest are depicted. Fluid is discharged
from a slot along the horizontal wall into the ambient near a
horizontal solid boundary parallel to the inlet jet direction. The jet
flow features are different in various regions. In the near-field up
to the step from the point of discharge, the jet behaves like a plane
wall jet. Further, the jet expands across the step. Due to the en-
trainment between the solid wall and the jet, there is a reduction
of pressure in this region, forcing the jet to deflect toward the
boundary and eventually attach to it. This is called the Coanda
effect [1]. Wall jet flow over a step occurs in many engineering
applications such as environmental discharges, heat exchangers,
fluid injection systems, cooling of combustion chamber wall in a
gas turbine, automobile demister, and others. In electronics cool-
ing, the prediction of the Nusselt number distribution along the
step is very important from a thermal design point of view.

Similarity the solution for a plane wall jet as well as a radial
wall jet for both the laminar and the turbulent cases are presented
by Glauert [2]. Schwarz and Caswell [3] have investigated the
heat transfer characteristics of a two-dimensional laminar incom-
pressible wall jet. They have found an exact solutions for both the
constant wall temperature and the constant heat flux cases. Yang
and Patel [4] have presented an analysis of mixed natural and
forced convection in a two-dimensional wall jet along a vertical
isothermal wall. In the case of the aiding flow, the buoyancy force
acts like a favorable pressure gradient and increases the tempera-
ture gradient at the wall, which results in a higher heat-transfer
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rate. The problem of turbulent convection with a wall jet is stud-
ied by Nizou [5]. Previous results for the relationships between
heat transfer and skin friction are supplemented, pointing out dif-
ferences between this situation and the classical boundary layer.
Angirasa [6] has studied a laminar buoyant wall jet and reported
the effect of velocity and the width of the jet during convective
heat transfer from the vertical surface.

Recently, Bhattacharjee and Loth [7] have simulated the lami-
nar and transitional cold wall jets and have investigated the sig-
nificance of three different inlet profiles, viz. parabolic, uniform,
and ramp. They have presented the detailed results of time-
averaged wall jet thickness and temperature distribution with Rey-
nolds averaged Navier-Stokes approach (RANS) for higher Rey-
nolds number and direct numerical simulation (DNS) approach for
the three-dimensional wall jet. Kanna and Das [8] have studied
the conjugate plane wall jet flow and reported close form solutions
for conjugate interface temperature, local Nusselt number distri-
bution, and average Nusselt number. Their analytical solution for
a low Pr case matches well the numerical solution. However, their
analytical solution for high Pr case is unable to produce results
close to the numerical solution.

Conjugate heat transfer study on the offset jet is carried out by
Kanna and Das [9]. They have studied the conjugate heat transfer
characteristics with four parameters, viz. Re, Pr, S, and k=Kkg/ks.
They have found that the fluid properties are affecting the heat
transfer in the solid slab. When Re is increased, the slab tempera-
ture is reduced. At low Pr, the heat transfer across the slab is
greater. It is decreased when the slab thickness is increased. The
conjugate interface temperature is decreased up to the recircula-
tion region and further increased close to a developed condition.
Kanna and Das [10] have reported in detail the flow characteris-
tics of a wall jet flow over a step. Reattachment length and local u
velocity decay, are reported for different step geometry. The heat
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Fig. 1 Schematic diagram and boundary conditions
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transfer study is also carried out by the same authors [11]. They
have found that the peak Nusselt number occurs due to entrain-
ment as well as recirculation. Step height enhances the average
Nusselt number. Similarity velocity profiles from different down-
stream locations are presented.

The same authors [12] have numerically investigated the effect
of properties involved in the conjugate heat transfer in a wall jet
flow over a backward-facing step. The conjugate heat transfer
characteristics are studied with flow property (Re), fluid property
(Pr), and solid to fluid conductivity ratio (k). They have noticed
that the fluid properties are affecting the heat transfer in the solid
slab. The conjugate interface temperature decreases along the
step. Two peak Nusselt numbers occur due to the entrainment and
the recirculation eddy. As k is increased, the average Nusselt num-
ber is increased and at a higher k, it approaches a nonconjugate
value. It is worthwhile to note that the conjugate heat transfer is
affected by the geometry of the solid slab involved in heat transfer
with the fluid medium.

Although many studies have been conducted on the wall jet, the
available literature suggests that the study concerning the effect of
geometry on a wall jet flow over a backward-facing step as the
conjugate case has not been carried out by any researcher. In the
present paper, conjugate heat transfer study is focused on finding
the effect of the step length, step height, and the bottom wall
thickness on the isotherm, conjugate interface temperature, local
Nusselt number distribution, and average Nusselt number distri-
bution.

2 Governing Equations and Boundary Conditions

The governing equations for the wall jet fluid flow are solved
by the stream function-vorticity method. The energy equations in
the fluid and the conduction equation in the solid slab are solved
by finite-difference method. The equations are given below.
stream function equation

Viy=-w 1)
vorticity equation
Jw . d(Uw) . Nvw) _ ivzw @
gt X & Re
energy equation in fluid region

(9_0f + 3(U0f) n (9(U ﬁf) _ 1 2

= 0 3
ot X ay RePr ' ®
energy equation in solid region,
J0, 1
o By, (4)
ot 041 Re PI’
where =stream function; u=dy/dy, v=-dy/dx; and o

=(dv/dx)=(au/dy); k=Kkg/ks.
The details of the boundary conditions are given in Karma and
Das [12].

3 Numerical Procedure

The unsteady vorticity transport equation (Eq. (2)) in time is
solved hy the alternate direction implicit (ADI) scheme. The cen-
tral differencing scheme is followed for both the convective as
well as the diffusive terms [13]. The energy equation (Eg. (3)) is
solved by the ADI method. ADI is first-order accurate in time and
second-order accurate in space O(At,Ax?,Ay?), and is uncondi-
tionally stable. The Poisson Eq. (1) is solved explicitly by five
point Gauss—Seidel methods. For the computation, a time step
0.01 is used for Pr=1.0,100.0, whereas for Pr=0.01, a time step
0.0001 is used. Here computation is terminated when the sum of
temperature difference from consecutive time marching steps is
reduced to the convergence criteria . The convergence condition
is given by the expression

114501-2 / Vol. 131, NOVEMBER 2009

imaxvjmax
> M- )+ (G- bl <e (5)
ij=1
Details of the numerical procedure are given in Kanna and Das
[12].

4 Validation of the Code

For validation and comparison study of the present situation,
the backward-facing step flow and the plane wall jet flow prob-
lems have been chosen. The fundamental features of the present
problem like expansion of the jet, recirculation of the eddies
formed, entrainment from the free shear layer, and heat transfer
are common with them. The computed results have shown excel-
lent agreement with them. Two split domain problems, viz. the
L-shape lid driven cavity problem as solved by Oosterlee et al.
[14] and backward-facing step flow with upstream channel [15]
are solved and the results are compared. The energy equation
solution of the backward-facing step flow is compared with that of
Dyne and Heinrich [16]. Excellent agreement has been obtained
with the benchmark solutions reported in the above references.
The laminar plane wall jet problem has been solved and the com-
puted velocity profiles are compared with the similarity solutions
of Glauert [2] and the experimental results of Quintana et al. [17]
in a similar way as represented by Seidel [18]. Details of the
validation for hydrodynamic solution as well as energy solution as
the nonconjugate case are given in Kanna and Das [8,10,12].

5 Grid Independence Study

The grid numbers 61 X 51, 71X 61, 97 X 85, and 127 X 125 are
used to obtain the average Nusselt number for grid independence
study. The average Nu values are given in Kanna and Das [12].
The variation in Nu is less than 1.5% for the last two grid system.
So the grid 97 X 85 is used for the entire computation.

6 Results and Discussion

The conjugate heat transfer characteristics, systematically stud-
ied for flow property (Re), fluid property (Pr), and the conductiv-
ity ratio (k), are reported in details in Ref. [12]. In the present
investigation, the effect of geometry on the conjugate heat transfer
has been studied with three parameters considered here. They are:
the length of the step (1), the height of the step (s), and the thick-
ness of the solid slab (w). Results are presented for different ge-
ometry sizes. Flow property, fluid property, and thermal property
are fixed as follows: Re=400, Pr=1, and k=5. The detailed con-
jugate heat transfer results are presented in terms of interface tem-
perature, Nusselt number (Nu) and the average Nusselt number
(Nu).

6.1 Effect on Interface Temperature. The effect of the ge-
ometry on the interface temperature is presented in Figs. 2-4. The
interface is divided into three lengths, viz. AB (step length), BC
(step height), and CD (L-1) (Fig. 1(b)). The interface temperature
decreases gradually up to a certain length followed by a sharp
drop (Fig. 2(a)). The temperature at midstep length is #=0.83 for
1=1, 6=0.92 for 1=2, and #=0.95 for 1=3. It is observed that
when | increases, the interface temperature is increased. As k; is
greater than k¢, more heating processes take place when 1 is in-
creased. The interface temperature decrement is continued along
BC and is shown in Fig. 2(b). For all three cases, the variations
are close to each other with maximum difference of =0.031 at
y=0 (i.e., point C). Along CD, the interface temperature decreases
to a minimum value and finally it reaches an asymptotic value in
the downstream direction (Fig. 2(c)). This trend is due to the
recirculation eddy and development of the wall jet after the reat-
tachment point. The effect of step height on the interface tempera-
ture is presented in Fig. 3. The interface temperature decreases
gradually and becomes minimum near the convex corner of the
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step (Fig. 3(a)). When s is increased, the interface temperature
value is reduced since the size of the recirculation eddy is in-
creased. Figure 3(b) shows the interface temperature along the
step height BC. It decreases through the entire length in a nonlin-
ear pattern. The interface temperature along CD is shown in Fig.
3(c). When s=1, it decreases to a local minimum value and fur-
ther downstream it increases to a near asymptotic value. For s
=2, it increases to a local maximum value and decreases to a local
minimum value; finally it attains a steady value of #=0.96. The
effect of the slab thickness w on the interface temperature is
shown in Fig. 4. Along AB (Fig. 4(a)), the interface temperature
decreases in the streamwise direction. When w increases, interface
temperature value is decreased. This is due to reduction of tem-
perature inside the slab at higher slab thickness. A boundary layer
type profile is observed where the interface temperature from an
asymptotic value drops sharply near the location at x=2. Along
BC it increases with an opposing nature to that of AB (Fig. 4(b)).
Along CD the interface temperature is shown in Fig. 4(c). It de-
creases to a local minimum value and further increases in the
downstream direction. It is noticed that when w is increased, the
interface temperature is decreased. It is observed that the mini-
mum value is shifted in the downstream direction when w is in-
creased (for w=1, x=5.01, w=2, x=5.49, w=5, x=6.05, w=10,
and x=6.54).

6.2 Effect on Nusselt Number Distribution. The effect of
the step length on the local Nusselt number is shown in Fig. 5.
Along AB, due to the entrainment, Nu is very large and it de-
creases in the downstream direction. When | is increased, a small
increment in Nu is observed (for I=1, Nu=46.93; for 1=2, Nu
=51.62, and for =3, Nu=53.31 at x=0.5) (Fig. 5(a)). This is
caused due to the variation in the entrainment near the inlet. How-
ever this variation is reduced along the downstream of the step
length. Figure 5(b) shows the Nu distribution along BC. Nu in-
creases to a maximum value and decreases in the direction of B to
C (negative y direction). When | is increased, the maximum value
is decreased (I=1, Nu=13.865; I=2, Nu=10.903; 1=3, Nu
=8.365). Nu distribution along CD is presented in Fig. 5(c). Nu
increases to a maximum value and then decreases to a near-steady
value in the downstream direction. It is noticed that when | is
increased, the magnitude is decreased and the peak Nu value is
shifted (I=1, x=3.679, Nu=11.769; 1=2, x=4.746, Nu=9.352; |
=3, x=5.678, Nu=8.501) in the downstream direction. The effect
of step height is shown in Fig. 6(a). Along AB, Nu is decreased in
the downstream direction. When s is increased, Nu is decreased
(for s=1, Nu=51.66 and for s=2, Nu=42.16 at x=0.5). Along
BC, Nu is decreased to a certain height and increases to a maxi-
mum value and then further it is decreased (Fig. 6(b)). This trend
is magnified at a higher step height. Along CD, Nu is increased to
a maximum value and decreases to a near-steady value (Fig. 6(c)).
When s is increased, Nu is decreased and the peak value is shifted
downstream (for s=1, Nu=9.35 at x=4.76 and s=2, Nu=8.43 at
x=7.25). This is attributed to the large size of recirculation eddy.
The effect of the slab thickness is presented in Fig. 7. Along AB,
Nu is sensitive to w (for w=1, Nu=51.66; for w=2, Nu=50.87,
for w=5, Nu=47.62 and for w=10, Nu=39.35 at x=0.5). It is
observed that when w is increased, Nu is decreased (Fig. 7(a)).
Along BC (Fig. 7(b)), Nu is increased to a maximum value and is
decreased and further increased (for w=1, 2, and 5). At higher
slab thickness (at w=10), the trend is slightly different such that
near the corner it is decreased. Along CD, Nu increases to a maxi-
mum value (at x=4.73 for w=1, Nu=9.35; w=2, Nu=8.35; w
=5, Nu=7.10, and w=10, Nu=5.28) and decreased gradually to a
near-steady value. When w is increased Nu is decreased. It is
observed that the peak value location does not vary for different w
(Fig. 7(c)). It is observed from the entire study that the singularity
is arisen at step corner B and the buffer zone effect is reflected at
the exit region results [18].
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Table 1 Average Nusselt number: effect of | (Re=400, Pr=1,
k=5, s=1, w=1)

| Nu % change
1 8.675 —

2 7.645 -11.88
3 6.909 -20.35

Table 2 Average Nusselt number: effect of s (Re=400, Pr=1,
k=5,1=2, w=1)

S Nu % change
1 7.645 —
2 7.066 -7.57

Table 3 Average Nusselt number: effect of w (Re=400, Pr=1,
k=5,1=2,s=1)

w Nu % change
1 7.645 —

2 7.239 -5.30
5 6.683 -12.57
10 5.400 -29.35

6.3 Effect on Average Nusselt Number. The bulk mean
property in terms of the average Nusselt number (Nu) are pre-
sented in Tables 1-3. When length of the step is increased from 1
to 3, the average Nusselt number is decreased by 20% (Table 1).
At a higher step height of 2, the average Nusselt number is de-
creased by 7.6% (Table 2). Table 3 shows the effect of slab thick-
ness in Nu. It is noticed that when slab thickness is increased to
10, the average Nusselt number is decreased by 29%.

7 Conclusions

Conjugate heat transfer study of a two-dimensional incompress-
ible nonbuoyant wall jet over a backward-facing step flow prob-
lem is carried out by solving the vorticity transport equation and
energy equation using stream function and vorticity formulation
for the fluid region and conduction equation for the solid region.
Parametric study is carried out for step length, step height, and
slab thickness. Results are presented in terms of conjugate inter-
face temperature, local Nusselt number, and average Nusselt num-
ber. This study is carried with Re=400, Pr=1, and k=5. The fol-
lowing conclusions are drawn.

1. Conjugate interface temperature is decreased in the down-
stream direction and further increases to a near-steady value.
When the length of the step is increased, interface tempera-
ture value is increased. When the step height is increased the
interface temperature is decreased. However within the reat-
tachment length the effects are reversed. When the slab
thickness is increased the interface temperature is decreased
in the downstream direction and further it is increased.

2. Near the inlet, the Nusselt number is larger due to entrain-
ment and further it is decreased. Along CD it is increased to
a maximum value and further decreases to a near-steady
value monotonically. When | is increased, it is decreased.
Similarly, as w is increased Nu is decreased.

3. Average Nusselt number is decreased up to 20.35% when
the length of the step is increased to 3. It is observed that
higher step height (s=2) reduces the Nu by 7.5%. The in-
crement in slab thickness from 1 to 10 reduces the average
Nusselt number by 29.35%.
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Nomenclature
h = inlet slot height, m
k = thermal conductivity ratio, ke/k¢
n = normal direction
Nu = local Nusselt number
Nu = average Nusselt number
Pr = Prandtl number, v/«

Re — Reynolds number for the fluid, Uh/ v

= height of the step, m

= dimensional temperature, °C

= dimensional time, s

= nondimensional time

= dimensional velocity components along (X, )
axes, m/s

dimensionless velocity components along (x,y)
axes

inlet mean velocity, m/s

= solid wall thickness, m

dimensional Cartesian coordinates along and
normal to the plate, m

X,y = dimensionless Cartesian coordinates along and
normal to the plate

= <l
sCl <« [SH R A
I I

x|
<
Il

Greek Symbols
a = thermal diffusivity (m?/s)
& = convergence criterion
6 = dimensionless temperature
6, = dimensionless average boundary temperature
« = clustering parameter
v = kinematic viscosity
¢ = dimensionless stream function
o = dimensionless vorticity

Subscripts
f = fluid
max = maximum
s = solid
w = wall

Journal of Heat Transfer

o = ambient condition
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